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Abstract

Model Checking is a highly automatic verification technique for finite state con-
current systems. In this approach for verification, temporal specifications are
exhaustively verified over the state-space of the concurrent system. The num-
ber of states grows exponentially with the concurrency of the system and that
makes explicit state-space enumeration based techniques inefficient. This phe-
nomenon is called state space explosion. One of the possible way to overcome
this limitation is to avoid explicit enumeration of state space. These approaches,
commonly known as Symbolic Model Checking[4], uses Boolean formulas to rep-
resent sets of states and transition relations. Traditionally, symbolic model
checking has become identified with Binary Decision Diagrams (BDD)[3], a
canonical form of representing Boolean formulas. But recently, some other
representations like Conjunctive Normal Form (CNF) using satisfiability solv-
ing (SAT) and polynomial algebra have been demonstrated to be quite powerful
in practice.

In this thesis, we propose an approach to symbolic model checking where
model checking is performed by decomposing a finite state system into com-
ponents. We first review the decomposition process proposed by Chakraborty
& Soni [21] and enhance it by guiding the process of decomposition. We ob-
served that computing the components of the system is an expensive operation.
Therefore our approach computes a new component only if the information in
existing components is not sufficient to prove (falsify) the safety property. We
call this approach Lazy decomposition.

The ideas are evaluated on publicly available benchmarks from ISCAS-89
benchmark suite using BDD and SAT based implementations. We report the
experimental results and compare it with earlier schemes.
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Chapter 1

Introduction

The exception which occurred was not due to random failure
but a design error. The exception was detected, but inappropriately
handled because the view had been taken that software should be
considered correct until it is shown to be at fault. The Board has
reason to believe that this view is also accepted in other areas of
Ariane 5 software design. The Board is in favor of the opposite
view, that software should be assumed to be faulty until applying the

correct.
-Prof. J. L. LIONS, Chairman, Inquiry Board, ARTANE-5.

The above excerpt is directly taken from the ARIANE-5, flight 501 crash
report[11], which exploded on June 4, 1996, less than 40 seconds after it was
launched. The committee investigated the accident found that it was caused
by a software error in the computer that was responsible for calculating the
rocket’s movement.

It is clear that the need for reliable hardware and software systems is crit-
ical. As the involvement of such systems in our life is increasing, criticality of
ensuring their correct operation is also increasing. Traditionally, testing and
simulation are used for establishing confidence in the design of software and
hardware systems. These methods usually involve providing certain inputs and
observing the corresponding outputs. Testing and simulation can be a cost effi-
cient way of minimizing errors. However, covering all possible interactions and
potential errors is rarely feasible. Hence there is an increasing interest in more
formal approaches.

This thesis presents a technique for verification using formal methods. In
this chapter we introduce formal verification methods and provide basic back-
ground of the problem addressed. Finally, there is a note on the main contri-
bution of the thesis and the organization of subsequent chapters.
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1.1 Formal Methods

Formal Verification methods aim at establishing that an implementation satis-
fies a specification. Here the term implementation refers to an abstracted model
of the system to be verified and specification refers to some property of the sys-
tem expressed in suitable form. Formal verification methods can be divided
into two basic categories of model-checking and theorem proving.

1.1.1 Theorem Proving

Theorem Proving, also known as deductive reasoning is an approach of formal
verification where the verification problem is represented as a theorem in a for-
mal theory. A formal theory consists of language in which formulas are written,
a set of azioms and a set of inference rule. These inference rules are for the
syntactic transformation of the formulas. With these rules and axioms, a the-
orem can be proved.

An advantage of Theorem Proving methods is that it can be applied to
infinite state systems. However, these approaches are often time-consuming
and requires mathematician’s intervention (highly skilled human intervention).
This lack of automation makes its applicability more difficult and limited to
safety critical systems.

1.1.2 Model Checking

Model Checking is a technique for verifying finite state concurrent systems. In
this technique, properties are specified as temporal logic formula and implemen-
tation is represented using finite state systems. A major benefit of restricting
the model to finite state systems is that verification can be performed automat-
ically. Given sufficient resources, it always terminates with a yes/no answer.

The restriction to finite state systems may seems to be too restrictive, but
in practice an important class of systems falls in this category. Hardware con-
trollers are fortunately one of them and so is communication protocols. We
can also verify the properties of other infinite state systems using their abstract
finite model.

Since model checking is highly automatic, it is preferable to deductive ver-
ification, whenever it can be applied. However, a major limitation of model
checking is the state explosion which can happen if the system to be verified
has a large number of concurrent components.

This thesis will concentrate on model checking and present a different ap-
proach to it. In next section, we briefly discuss the history of model checking
and the basic problem addressed in this thesis.
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1.2 Motivation for the thesis

1.2.1 History

The basic principles of model checking were developed in the early 1980’s in-
dependently by Quielle & Sifakis [20] and Clarke & Emerson [7, 6]. The basic
idea is to model the system of interest so as to allow the generation of a graph
that contains the reachable states of the system as nodes and the state tran-
sitions between them as edges. When a labeling of the nodes with atomic
propositions which hold at each state is added, this graph is known as a Kripke
structure of the system. The specification of the property we are interested in is
given by a temporal logic formula. One can check with a model checking algo-
rithm whether the system meets its specification, i.e., by checking if the Kripke
structure of the system is a model of the specification. For small systems the
approach is quite practical, but in systems with many concurrent parts, global
state transition graph becomes too large to handle.

In 1987, McMillan proposed a new methodology for model checking called
Symbolic model checking [4]. In symbolic model checking the main idea is to
represent the behavior of the system in a symbolic form rather than explic-
itly constructing a Kripke structure as a graph. There are several variations
to symbolic methods. Their common feature is the use of representations of
sets of states of the system in implicit form rather than having each global
state of a system explicitly represented, e.g., as a node of the Kripke struc-
ture. McMillan used Ordered Binary Decision Diagrams (henceforth BDD) [3],
a canonical form for Boolean expression, to represent the characteristic func-
tions. Model Checkers based on BDDs are usually able to handle billions of
states. Although symbolic representation using BDDs has greatly increased
the size of the systems that can be verified, many realistic systems are still too
large to be handled. This is because the performance of BDD based approaches
depends heavily on the variable ordering [see, Section 2.2]. Variable ordering is
frequently hard to generate automatically and generally human intervention is
needed.

Recently, several suggestions have been made to replace BDDs with methods
based on propositional satisfiability (SAT) procedures [2, 17, 18] to further im-
prove the scalability of symbolic model checking. SAT solver based algorithms
usually require much less space and usually work well in default settings. In ad-
dition, a number of efficient implementations of SAT solvers are available, both
proprietary (PROVER) and in public domain (GRASP, SATO, CHAFF etc),
that can handle thousands of variables. These strengths of SAT solvers make
these approaches a promising alternative to BDD for symbolic model checking.

In this thesis, we propose an algorithm for symbolic model checking as a
possible solution to some of the problems with existing algorithms. In this thesis
we will concentrate on SAT based implementation of the approach, but results
shows that it can perform well irrespective of underlying decision procedure
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(i.e., BDD or SAT). Before going into details, here we informally define the
problem addressed by the thesis.

1.2.2 OQutline of the problem

We are interested in checking safety properties of large finite state machine
with a large number of inputs. Safety properties are the class of properties that
state that “something bad does not happen”. Given a finite state machine and
a safety property, we wish to either validate that the machine respects the prop-
erty, or find an execution path that shows how the model violates the property.

To perform safety checking of finite state machines, the issues we face in-
clude:

e Satisfiability Checking: Checking whether a characteristic function'
represents an empty set of states.

This step can be termed as “satisfiability checking”. We need this oper-
ation at two places: (i) while deciding whether an initial set of states is
a subset of another set of states; and (ii) while checking whether two sets
of states are equivalent.

Satisfiability checking is the area of expertise of SAT-based symbolic
model checkers. A variety of efficient SAT-solvers are available which
can find satisfying assignment faster because of the depth-first nature of
SAT search procedures. In chapter 2, we discuss various SAT search pro-
cedures in detail.

e Quantification Elimination: Given a set of states, computing the set
of states that can be reached using one transition via the transition rela-
tion of the Kripke structure.

This step is termed as “image computation”. In traditional symbolic
model checking, image computation requires existential quantification of
the characteristic function (Boolean expression) over some Boolean vari-
ables. Quantification elimination is an expensive operation in SAT based
techniques. Existing SAT-based approaches eliminate the quantification
over state variables using “quantification-by-substitution” (see, equation 3.3)
rule and then naively resolve the quantification (using equation 3.4) over
input variables by doubling the formula size. This makes these techniques
inefficient when number of input variables are large.

This thesis presents a symbolic model checking technique which addresses
the quantification problem by decomposing the finite state machine.

"We will use the term “characteristic function” to denote the function that represents a
set of states symbolically.
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1.3 Contributions

The main contributions of this thesis are summarized below:

1. A decomposition based quantifier elimination scheme which enhances the
work given in [21] by guiding the decomposition process in the hope of
searching counter-example faster.

2. A backward reachability based model checking algorithm called “Lazy
decomposition”, which computes the component sub-graph only if the
validity of safety property is not answerable using available components.

1.4 Outline of the thesis

This thesis is organized as follows:

In the next chapter we discuss the basics of BDDs and SAT solvers. Chapter
3 briefly reviews the work done in the field of symbolic model checking. In par-
ticular, we discuss most popular algorithms based on BDDs and SAT, vis-a-vis
our algorithm.

Chapter 4 describes our approach for quantifier removal. In that chapter
we first discuss the basic framework set by Chakraborty & Soni [21] for Kripke
structure decomposition and then explain our heuristic to guide the process to
possibly converge towards counter-example faster.

In chapter 5, we propose an algorithm for safety property checking over the
components of the Kripke structure. We then explain this technique, called as
lazy decomposition, with the help of an example.

In chapter 6, we demonstrate the promise of our approach by providing the
results of our experimental work. Experiments were carried out using BDD and
SAT based implementations of the algorithm. We report the improvements by
our technique over traditional symbolic model checking algorithms.

Finally In chapter 7, we draw some conclusions and discuss possible future
work.
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Chapter 2

BDDs and SAT

Boolean Algebra is the basic mathematical tool for symbolic model checking.
This chapter introduces some basic definitions related to Boolean functions.
Satisfiability Checking of Boolean functions is one of the most crucial operation
of symbolic model checking. Most of the symbolic model checking algorithms
either use Binary decision diagrams (BDDs) or satisfiability solvers (SAT) to
determine the satisfiability of the Boolean functions. In this chapter, we define
BDD and SAT formally and discuss underlying concepts in detail.

2.1 Preliminaries

Definition 2.1 (Boolean Expression): The classical calculus for dealing
with truth values consists of Boolean variables x, y, ..., the constants true
1 and false 0, the operators of conjunction A, disjunction V, negation —, impli-
cation = ,and bi-implication <, which together form the Boolean expressions.
Sometimes the variables are called propositional variables or propositional let-
ters and the Boolean expressions are then known as Propositional Logic. A
literal [ is either a proposition (say, p) or the complement of one (denoted by
p); in the first case, we say that | is a positive literal, and in the second, we say
that | is a negative literal.

Formally, Boolean expressions are generated from the following grammar:

[ tu=a [0[1|~t[t At[EVE[E = t][t ot

where x ranges over a set of Boolean variables. This is called the abstract syntaz
of Boolean expressions.

Definition 2.2 (clause): A clause is a finite disjunction of literals.

A clause is called as “unit clause” if it contains only one literal.

Definition 2.3 (Conjunctive Normal Form): A propositional formula is
in Conjunctive Normal Form (CNF) if it is a finite conjunction of clauses.

13
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Example 2.1 Formula (wVyV 2) A(ZVy)A(xzVyVZz)isin CNF, where
w,z,y and z are propositional variables and (wVyV z),(zVy) and (xVyV z)
are the clauses of the formula.

Definition 2.4 (Truth Assignment): A truth assignment v is a partial func-
tion from the set of propositions to {T, F}, where T and F denotes logical
truth and falsehood, respectively. We can extend the definition of v in a nat-
ural way so that it assigns truth values to literals, clauses and formulas. For
a literal 1, if | is a positive literal of p then v(l) = v(p) else v(l) = v(p)'. For
a clause C = Vi l;; v(C) = Vi v(l;). For a CNF formula F = N]_,Cj;
o(F) = ANj_v(Cj). Similarly this definition can be extended to any arbitrary
formula.

We say that a Truth assignment v satisfies a (formula/clause/literal) ¢, if v

(¢)=T; and v falsifies ¢, if v (¢)=F.

Definition 2.5 (Satisfiability): A formula F is called as satisfiable if there
exists a truth assignment to its literals that satisfies F.

A formula F is called as unsatisfiable if if there exists no truth assignment to
its literals that satisfies F.

A formula F' is called as valid (tautology) if all possible truth assignment to its
variables satisfies F'.

Example 2.2 The formula discussed in Example 2.1, is satisfiable because the
truth assignment {1 < w,0 + x,0 < y,1 < 2z} satisfies it.

Definition 2.6 CNF Satisfiability problem : The CNF satisfiability prob-
lem is simply this [12]:

Given a propositional formula F in CNF, is there any assignment to its literals
that satisfies F.

CNF satisfiability problem, commonly known as SAT, is a famous NP-complete
problem. It means that it is not proven to be intractable but polynomial time
algorithm for solving it is also not known.

Cofactor and quantification of Boolean formulas are important operations
for symbolic model checking. They can be defined as follows:

Definition 2.7 (Cofactor and Quantification): The positive cofactor of a
Boolean function F with respect to a variable a is the function that is obtained
by replacing every occurrence of a in F by constant 1, and it is denoted by F,.
Similarly negative cofactor of F with respect to a is the function obtained by
replacing every occurrence of a in F by constant 0, and it is denoted by Fj.

'We use overline (F) representation to show the negation of the formula (—F).
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Figure 2.1: Representing Boolean function using BDDs

Ezistential quantification of a variable a from a function F' is denoted by da - F
and can be defined as :

Ja-F=F,VF, (2.1)

Similarly universal quantification can be defined as :

Va-F =F,\F, (2.2)

2.2 Binary Decision Diagrams

Binary Decision Diagram (BDD) is a data structure suitable for representing
binary function. Bryant [3] proposed this representation by imposing restric-
tion on the representation first introduced by Lee [15] and Akers [1], such as
the resulting form is canonical. BDDs? are substantially compact than other
traditional representation like truth tables, conjunctive normal form and dis-
junctive normal form. In addition, they can be manipulated very efficiently.
Hence they have been widely used for symbolic model checking.

In particular, BDDs represents a Boolean function as a rooted, directed
acyclic graph. As an example, Figure 2.1 illustrates the representation of the
Boolean function f(z1, z92,x3) = (z122+ 2923+ x3271), for the special case when
the graph is a tree. Each non-terminal vertex v is labeled by a variable var (v)
and has two children: else (v) (shown as a dashed line) corresponding to the
case when variable is assigned to the value 0, and then (v) (shown as a solid
line) corresponding to the case where the variable is assigned the value 1. Each
terminal vertex is labeled 0 or 1. For a given assignment to the variables, the
value yielded by the function is determined by tracing a path from the root to a
terminal vertex, following the branches indicated by the values assigned to the

2We use the term BDD to refer the restricted Binary decision diagram, introduced by
Bryant et al.



16 CHAPTER 2. BDDS AND SAT

A) Elimnate B) Elininate C) Elininate
Dupli cate Dupl i cat e Nont er mi nal s Redundant Tests
Terninal s

Figure 2.2: Transformation Rules for OBDDs

variables. Then the value of the function is then given by the terminal vertex.

2.2.1 Ordered Binary Decision Diagram

An Ordered BDD (OBDD), has a total ordering < over the set of variables. For
any vertex v, and either nonterminal child v of u, their respective variables must
be ordered as var (u) < var (v). In the decision tree of Figure 2.1, for example,
the variables are ordered x1 < x2 < x3. We further need three transformation
rules over these graphs that do not alter the function represented, but result in
more compact and canonical representations of the functions.

1. Remove Duplicate Terminals: Choose a representative terminal
vertex for the constant 0 and one representative terminal vertex for the
constant 1. All arcs going into a terminal 0 vertex are directed into
the representative terminal ( vertex, and similarly all arcs going into a
terminal 1 vertex go to the representative terminal 1 vertex.

2. Remove Duplicate Nonterminals: If nonterminal vertices » and v
have var (u) = var (v), else (u) = else (v), and then (u) = then (v), then
eliminate one of the two vertices and redirect all incoming arcs to the
other vertex. This results in isomorphic subgraphs within the tree being
shared. It is this sharing property that enables BDDs to be a compact
representation for many Boolean functions.

3. Remove redundant Tests: If nonterminal vertex v has else (v) =
then (v), then eliminate v and direct all incoming arcs to else (v).

Starting with any BDD satisfying the ordering property, we can reduce its
size by repeatedly applying the transformation rules. We use the term “Reduced
Ordered Binary Decision Diagrams ( ROBDDs)” to refer to a maximal reduced
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graph that obeys some ordering. Figure 2.2 illustrates the reduction of the
decision diagram shown in Figure 2.1. Since we always use this data structure
in its ordered and reduced form, we will use the term BDDs to mean ROBDDs.

2.2.2 Properties
Operations and Complexity

Bryant [3] gives algorithms for computing the BDD representation of —f and
f op g ( where op is a Boolean binary operator ), given the BDDs for f and
g. These functions have complexity linear in the size of the argument BDDs.
Another useful operation over BDDs is quantification over Boolean variables.
Bryant also gave an algorithm to compute the BDD for Restrict operator, using
which existential and universal quantification can be computed by equation 2.1
and equation 2.2. Satisfiability checking is an important operation in symbolic
model checking. Since BDDs are canonical, using BDDs satisfiability checking
can be done in constant time.

Procedure Result Time Complexity
Reduce G reduced to canonical form O(|G|.log|GY)
Apply fi <op> f O(|G1].1G2])
Restrict Flon 0(G| + log|G)

Compose f]|f1)i:f2 O(|G1|2|G2|)

Satisfy-one some element of Sy O(n)
Satisfy-all Sy O(n.|Sy|)

Satisfy-count S| O(|G])

Table 2.1: Summary of Basic Operations

The basic operation on Boolean functions represented as function graphs are
summarized in Table 2.1. These few basic operations can be combined to per-
form a wide variety of operations on Boolean functions. As the table shows,
most of the algorithms have time complexity proportional to the size of the
graphs (represented by |G|) being manipulated. Hence, as long as the functions
of interest can be represented by reasonably small graphs, BDD manipulation
algorithms are quite efficient.

Ordering Dependency

The form and size of the BDD representing a function depends heavily on the
ordering of the variable. In general, choice of variable can make a difference
between linear and exponential (in terms of number of variables). For example,
Figure 2.3 shows two BDD representation of the same formula a1b1 4+ aobs +asbs
but with different variable ordering. The choice of variable ordering a1 < by <
as < by < ag < by yield a BDD of 8 vertices, while the choice of the variable
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Figure 2.3: Effects of variable ordering

order a1 < as < ag < by < by < by yields a BDD with 16 nodes.

Most applications using BDDs choose some ordering at the beginning and
construct graphs for all relevant functions according to this ordering. The
generation of variable ordering is often time consuming or requires inputs from
the designer. This limitation reduces the degree of automation of BDD based
approaches. Furthermore, there exists some functions for which every variable
ordering results in exponential number of nodes. Unfortunately, some functions
of practical interest like integer multiplication [3] falls into this category.

2.3 Satisfiability Solving

Satisfiability checking is one of the basic operations in symbolic model checking.
In SAT-based model checking, this step is performed using specialized tools
for checking satisfiability, called as SAT-solvers. In this section we will discuss
basics of SAT-solvers in detail.

As we know that checking the satisfiability of a Boolean formula (SAT)
is NP-complete. Boolean satisfiability is probably the most researched com-
binatorial optimization/search problem. This research has culminated in the
development of several SAT solving packages that can rapidly solve many SAT
formulas of practical interest.

In this section, we first review two of the most popular algorithms for SAT
solving, called as Davis and Putnam algorithm and Stalmarck’s algorithm.
Since these algorithms, and many other SAT-search algorithms works with
Boolean formulas in CNF (clausal form), we need to convert a general formula
to CNF before giving it to a SAT solvers. We discuss two common approaches
to convert a general formula (non-clausal form) into CNF.
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2.3.1 Popular Algorithms for SAT
Davis & Putnam Algorithm

The first SAT algorithm is traditionally attributed to Davis and Putnam [8]
and referred to as Davis Putnam procedure (or DP in short). The original DP
algorithm is based on resolution. In resolution, a variable v is selected and a
resolvant (see the definition below) using v is added to the original formula. This
process is repeated to exhaustion or until an empty clause is generated. The
original formula is not satisfiable if and only if an empty clause is a resolvant.
More formally, we can define resolution using following definition:

Definition 2.8 (Resolution) Given two clauses C1 = (vV 1V za V...V Ip)
and C1 = (0Vy1 Vya V... Vyy) , where all ; and y; are distinct, the resolvant
of C1 and Cy is the clause (£1 V...V xy, Vy1 V...V yy,) that is the disjunction
of Cy and Cy without v or v. The resolvant is the consequence of logical AND
of the pair of clauses.

Resolution is the process of repeatedly generating resolvant from the original
clauses and previously generated resolvants, until either the null clause is derived
or no more resolvants can be created. In former case, the formula is unsatisfiable
and in the latter case, it is satisfiable.

A later version of DP, due to Davis, Logeman and Loveland [16], usually
known as DPL, uses splitting rule which replaces the original problem into
two smaller subproblems, whereas DP uses resolution which replaces original
problem with one (usually larger problem).

Definition 2.9 (Splitting) In splitting, a variable v is selected from a for-
mula, and the formula is replaced by one sub-formula for each of two possible
truth assignments to v. Fach subformula has all the clauses of the original ex-
cept those satisfied by the assignment to v and otherwise all the literals of the
original formula except those falsified by the assignment. Neither sub-formula
contains v, and the original formula has a satisfying truth assignment if and
only if either sub-formula has one. Splitting insures that a search for a solution
terminates with a result.

DPL is implemented more often than DP because variable elimination (us-
ing resolution) has four disadvantages: (1). Tt is more difficult to implement
than splitting rule; (2) it tends to repeatedly increase the length and number
of clauses; (3) it tends to generate a lot of duplicate clauses and (4) it very
rarely generates unit clauses. Furthermore, DPL’s splitting rule also makes it
easier to construct a certificate of satisfiability?, whereas DP makes it easier to
construct a certificate of unsatisfiability.

There are many variants of Davis-Putnam procedure, each variant differing
for the set of rules implemented for performance optimization. Two such rules
are unit clause rule and empty clause rule.

#This can be used for counterexample generation in symbolic model checking.
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Definition 2.10 (Unit Clause Rule): If the formula contains some clause
with only one literal, then select that variable and assign it a value that satisfies
the clause containing it; otherwise select any other variable for splitting.

Definition 2.11 (Empty Clause rule): If the formula contains some empty
clause (a clause which always has value false) then exit and report that the
formula is unsatisfiable; otherwise select any other variable for splitting.

Algorithm 2.3.1: DP (¢, i)

/ * Schema for Davisand PutnamAlgorithm x /

(if p=T
then return y; / * Base x /
ifp—F
then return False; | * Backtrack x |
if a unit clause(l) occurs in ¢ / * UnitClause  /
then return DP (assign(l, ¢), u Ul);
[ <~ CHOOSE-LITERAL(¢, p); / * Split * /
return DP (assign(l, ¢),p Ul); or
L DP (assign(=l, ¢), u U =l);

The basic algorithm for DPL is given in Algorithm 2.3.1. To search the
satisfiability of CNF formula ¢, the procedure has to be invoked by the call DP
(¢,{}), where {} is the empty assignment. DP (¢,{}) returns as assignment
w if ¢ is satisfiable, and False otherwise. If N is the number of propositional
variables in the formula, DP searches in a space of 2V assignments. Notice that
the number of the propositional variable is thus more critical than the size |¢|
of the formula in determining the run-time of the basic DP procedure. There is
a wide variety of tools that implement some flavor of DP algorithm. ZCHAFF,
SATO, SIM and GRASP are few of them.

Stalmarck’s procedure

Stalmarck’s Saturation method [22] is a patented algorithm that can be used
for satisfiability checking. The method has been successfully applied in an wide
range of industrial applications. The algorithm takes the set of the formulas
{z1,z9,...,2,} as input, and produces an equivalence relation over the negated
and unnegated subformulas of all z;. Two subformulas are equivalent accord-
ing to the resulting relation only when this is a logical consequence of assuming
that all formulas z; are true. The algorithm computes the relation by carefully
propagating information according to the structure of the formulas.

The saturation algorithm is parameterized by a natural number k, the satu-
ration level, which controls the complexity of the propagation procedure. The
worst case time complexity of the algorithm is O (n?**1) in the size n of the
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formulas, so that for a given k, the algorithm runs in polynomial time and
space. A fortunate property is that this k is surprisingly low (usually 1 or 2)
for many practical applications, even for extremely large formulas.

The advantage of having control over the saturation level is that the user can
make a trade-off between the running time and the amount of information that
is found. A disadvantage is that it is not always clear what k to choose in
order to find enough information. In contrast, finding equivalences using BDDs
results in discovering either all information, or no information at all due to ex-
cessive time and space usage. The SAT-solvers based on stalmarck’s procedure
is PROVER.

2.3.2 Dealing with non-CNF formulas

Traditionally, the satisfiability problem for propositional logic deals with formu-
las in CNF (also known as clausal form). A typical way to deal with non-CNF
formulas requires (1) converting them into CNF, and (2)applying SAT solvers
based on above discussed approaches. A formula can be converted to CNF
using following methods:

1. Classical Method: Conversion of a formula ¢ into CNF can be done
using this method as follows: first, ¢ is converted into negation normal
form and then the rule

AV ¢ VAV dem) = A ¢V dim)
(] k. m ik

J m

is recursively applied to distribute A’s over V’s. As result of this con-
version, we get a formula ¢ which is logically equivalent to ¢. However,
this transformation may lead to a considerable increase in the size of the
formula (in the worst case, || is O(2/?!)), which makes the method of no
practical utility in many cases.

2. Using Auxillary Variables: A more convenient way to convert ¢ into
CNF is based on the idea of renaming the sub-formulas of ¢. In this
method, a newly introduced variable a4, is associated to each non-literal
subformula ¢; of ¢. Then each ay, substitutes every occurrence of ¢; in-
side ¢, and the expression (ay, < ¢;) is added to the result.

In order to identify all subformulas of the expression ¢, it is first repre-
sented as a directed acyclic graph (DAG) and then each nonterminal node
of the DAG will represent a subformula ¢; of ¢.

Example 2.3 To identify all subformulas of the Boolean function ¢ =
((z1 - 22+ (w2 + 23)) © (23 (3 +72))), it can be represented in a DAG
as Figure 2.4. Auzillary variables ay,as,a3,a4,a5 and ag are introduced
corresponding to each nonterminal (subformula of ¢). Using above defined
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Figure 2.4: Representation of a Boolean formula as a DAG

approach, the CNF formula corresponding to ¢ would be:

a

> > > > > >

The subformulas that are not in CNF form, can be converted to CNF
using the definition of < operator and the classical method discussed
earlier. Here since the number of variables in each subformula is at most
three, this conversion is practical.

Davis Putnam Algorithm for non-CNF formulas

An interesting improvement of D&P method is given by Giunchiglia et al. [13],
when applied to non-CNF formulas. Suppose we want to check the satisfia-
bility of a non-CNF formula ¢. Before applying DP, we must convert ¢ to
corresponding CNF formula 1 in the original variable and in a set of K newly
added variables. Therefore, standard DP will search in a space of 2V +5
ment, for it may backtrack on newly added auzillary variables. In the approach
taken by [13], splitting is not performed on newly added variables, eliminating
thus 2% factor. The underlying idea of these variants is that splitting should oc-
cur only for the variables in original non-CNF formula. [13] gives two methods
based on the above principle known as DP* and DP** algorithms. This method
is implemented in a variety of SAT-solvers including SIM and ZCHAFF.

assign-



Chapter 3

Related Work

The main idea behind symbolic model checking is to represent sets of states
and transition relations as characteristic formulae (Boolean expression). After
the introduction of Symbolic model checking technique by McMillan, a lot of
representations have been suggested for storing and manipulating Boolean ex-
pressions. As discussed in chapter 2, BDDs and SAT are forerunners among
them. In this chapter, we will discuss the key points of various BDD and SAT
based algorithms.

Definitions

Definition 3.1 (Kripke Structure) A Kripke structure M is a five tuple
M ={S,Sy,N,L, AP} where

1. S is a finite set of states.
2. 89 C S is the set of initial states.

3. N C S x S is a transition relation that must be total, that is for every
state s € S there is a state s' € S such that N(s,s').

4. AP denotes the set of atomic propositions.

5. L:8 — 247 is a function that labels each state with the set of atomic
propositions true in that state.

Kripke structure is one of the popular mathematical representation of finite
state machines. In the remaining text we use Kripke structure to represent a
finite state machine.

3.1 BDD-based symbolic model checking

Symbolic model checking has become identified with BDDs, a canonical form
for Boolean formula representation that has proved to be quite efficient for
this purpose in practice. As we discussed in the previous chapter, efficient

23
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algorithms for manipulation of BDDs exist. Since BDDs are canonical repre-
sentation, substantial subexpression sharing occurs and that results in compact
representation of Boolean expressions. In addition, canonicity implies that sat-
isfiability and validity can be checked in constant time.

Many of the ideas in BDD based model checking can be explained consider-
ing the problem of computing reachable states. In the following subsection,
we will discuss basic algorithms for symbolic reachability in context of “safety
properties”.

3.1.1 Symbolic Reachability Algorithms

Given the BDD for the initial state Init(x) and transition relation N(x,x’), one
step successors (also termed as Image) and one step predecessor(also termed
as pre-image) of any set of states can be computed using BDD based symbolic
algorithms. This can be done repeatedly to explore all the reachable states.
If the safety property to be checked is Prop(x), we characterize set of bad
states Bad(x) as = Prop(x). There are two standard algorithms for performing
reachability analysis:

Forward Reachability

In forward reachability we compute a sequence of formulas F;(x) that charac-
terize the set of states that initial states can reach in at most i steps:

Fy(x) = Init
F(x) = F(')V3IL[Fi(x)AN(x,x")] (3.1)
We terminate the sequence generation if one of the following condition occurs:

1. F,(x)ABad(x) is satisfiable; it means that a bad state is reachable. Hence
we can conclude that safety property is violated.

2. F;(x) = Fj41(x); It means that no new state is reachable using the tran-
sitions in transition relation. This situation is termed as fized point. If
we reach a fixed point without encountering a bad state, we can conclude
that the system is safe with respect to the property under consideration.

Backward Reachability

In backward reachability, we compute a sequence of formulas B;(x) that char-
acterize a set of states that can reach a bad states within ¢ steps:

Bg (X) = Bad
Biy1(x) = Bi(x)V3x[Bi(x') A N(x,x')] (3.2)

In a similar manner to forward reachability, we can stop the sequence generation
if:

1. B,(x) A Init(x) is satisfiable; or
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Figure 3.1: Forward and Backward reachability analysis

2. Bj(x) = Bj+1(x) holds.

The intuition behind forward reachability and backward reachability is shown
in the Figure 3.1. These two reachability methods can be combined to perform
reachability analysis by interleaving the steps of forward and backward reacha-
bility. The sequence generation can be terminated if we reach a fixpoint in any
of the directions or F,, and B,, intersects.

3.1.2 Limitations of BDD based approaches

BDDs have proved to be a viable representation for doing symbolic reachability
on large finite state machines. However, for many large systems, most sophis-
ticated BDD based algorithms can not produce results. This is because the
size of intermediate BDD, while computing the reachable state space, blows up
beyond the memory capabilities of most machines. This is commonly known as
BDD blowup problem.

As discussed in the previous chapter, the size of the BDD depends heavily
on the variable ordering. The generation of a variable ordering that results in
small BDDs is often time consuming or needs human intervention. Moreover,
there exists some functions that can not be represented efficiently regardless
of the input ordering. Unfortunately, some important functions like integer
multiplication [3] falls within this category.

3.2 SAT-based symbolic model checking

Propositional decision procedures(SAT) also operate on Boolean expressions
but do not use canonical forms. They also do not suffer from potential space
blowup of BDDs and can handle propositional satisfiability problem with thou-
sands of variables. These strengths of SAT procedures makes SAT-based model
checking quite promising.
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In this section, we review the work done in the field of SAT based model check-
ing and will compare our solution with each of them.

3.2.1 Bounded Model Checking

Bounded model checking [2] procedure, proposed by Clarke et al., searches for
counterexamples by “unrolling” the transition relation k£ steps, for increasing
values of k. At each step k, the unrolling characterizes the set of paths of length
k through the transition relation, and is described as a formula (without quanti-
fiers). If no counterexample is found, the search is terminated when the value of
k is equal to the diameter of the system. However, the value of the diameter is
usually hard to compute, making BMC incomplete in practice. In other words,
unless bound on the length of the counterexamples is not given, BMC can not
actually verify the the given property, it can only produce counterexamples.
The technique presented in this thesis is not “bounded” and hence can prove
the correctness if the property is true.

3.2.2 Standard Reachability based Approaches

Abdulla et al. [19] have shown how to adapt standard algorithms for sym-
bolic reachability analysis to work with SAT-solvers. They introduced Reduced
Boolean Circuits (RBC) [10], a non canonical representation for Boolean for-
mulas. The advantage of using a non canonical representation is that they are
more succinct than canonical ones. On the other hand, satisfiability checking
with non-canonical data structures is hard. They used SAT solvers to deter-
mine the satisfiability of RBC representation of the Boolean formula. The only
operation of reachability analysis that does not straightforwardly carry over
using RBCs is quantification over propositional variables.

For quantifier elimination they contributed some really effective heuris-
tics to simplify Quantified Boolean formula. In particular quantification-by-
substitution rule (or in-lining rule)

Az.(z & P) A d(z) <= $(¢) (3.3)

turned out to be very useful. We will also use this heuristic to remove the need
of quantification over state variables. For quantification over input variables,
they naively resolve it, using equation 3.4, yielding an exponential blowup in
representation size.

Az.¢(x) <= $(0) V ¢(1) (3.4)

This makes their approach impractical, if the number of input variables are
large. Our algorithm removes the requirement of quantification over input vari-
ables, making model checking of FSMs with large input variables practical.

Clarke et al. [24] adopted a similar approach for standard reachability anal-
ysis using SAT solvers. They introduced another non canonical data structure
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Boolean Expression Diagrams (BED) [24] to represent the Boolean formula. In
their approach, they use similar approaches for quantification removal. They
have reported improvements over Abdulla et al.’s approach. But again, their
method is also susceptible to possible blowup in representation size if number
of inputs is large.

3.2.3 Induction based Approaches

This approach was initially suggested by Sheeran et al. [17] for verifying safety
properties over finite state systems. It is based on unfolding the transition rela-
tion to the length of longest “shortest path” between two states. The fact that
this length has been reached can be checked using a SAT solver. Thus, unlike
BMC, this method can verify the correctness of a property.

The performance of SAT-solvers depends heavily on the size of the Boolean
formula. The above scheme of “unfolding ” the transition relation increases the
size of the Boolean expression at each step. The approach taken by us does not
involve unfolding the transition relation and hence can possibly produce small
Boolean expressions.

3.2.4 SAT based Quantifier Elimination

In [18], McMillan used Satisfiability solving for quantification removal. In par-
ticular, he showed that with a slight modifications, modern SAT algorithms can
be used to eliminate universal quantifiers from an arbitrary quantified Boolean
formula, producing a result in CNF. This method requires modification in the
satisfiability solvers whereas our method can work with existing SAT solvers.

3.2.5 Quantifier Elimination using decomposition

The work most closely related to ours is by Chakraborty & Soni [21]. They
initially suggested the method of model checking using decomposition (defined
formally in Chapter 4) of the Kripke structure. In their approach for decompo-
sition, number of components can be large even if there exists a short counterex-
ample. In this thesis we have used their approach for quantifier elimination and
enhanced it by guiding the decomposition process such that the counterexample
of length k can be detected using at most k components. We call this technique
“counter-example focused” decomposition.
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Chapter 4

Quantifier Elimination

From the discussion in previous chapters, it is clear that existential quantifica-
tion plays a central role in symbolic backward (as well as forward) reachability
analysis. The standard symbolic reachability algorithm [9] applies this op-
eration repeatedly during a breadth-first traversal of the state space, until a
fixed point is reached. If the diameter of the backward reachable part of the
Kripke structure is large, backward reachability analysis entails a large number
of applications of existential quantification, even with iterative squaring. Un-
fortunately, existential quantification is an expensive operation to implement
in BDDs. In fact, BDD packages typically provide an optimized AndAbstract
operator to aid this step of reachability analysis. While this works better than
performing conjunction and quantification separately, it still leads to blowup of
intermediate BDD sizes in most cases.

In this chapter, we address this bottleneck by presenting a technique that
does not require quantification for symbolic reachability analysis. In this tech-
nique, the need of quantification over input variables is removed by decom-
posing the Kripke structure of the system into a set of Kripke structures (
known as components). This technique was initially proposed by Chakraborty
and Soni [21]. Their approach has the disadvantage that even if a short coun-
terexample exists, decomposition may results in a large number of components.
We further enhance this technique by guiding the decomposition process such
that if the length of the shortest counterexample is k, counterexample can be
detected using at most k£ components. In the remainder of this chapter, we
present our ideas in the context of backward reachability analysis. Extensions
to forward reachability analysis are discussed in Section §.4.

4.1 Motivation

For deterministic systems, Filkorn [23] proposed an alternative approach to tra-
ditional backward Image computation. Filkorn showed that pre-image of a set
can be obtained by substituting the state variables with their corresponding
next state functions. This approach removes the need of quantification over
state variables. Similar ideas for quantifier simplification have been used by
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Abdulla et al. [19] and Williams et al. [24] in the context of symbolic reacha-
bility analysis using SAT based techniques.

Consider the problem of backward image computation as discussed in Chap-
ter 3. The most expensive step of backward image computation is computing
the relational product 3 [B;(x') A N(x,x')] (equation 3.2), where B;(x') is the
current set of states and N(x,x’) is the next state transition relation. For de-
terministic finite state machines (like hardware sequential circuits), transition
relation can also be written in the form of transition functions, where each of
the x' can be written as z} = fi(x,1).

Example 4.1 Consider the finite state machine shown in Figure 4.2.3. Let
the set of state variables is x = {x1,x9} and corresponding next state version
is x' = {a',24}. i1 and iy are the input variables. Next state function of this
finite state machine will be:

T, = T +11.79

The pre-image of a set B;(x’) can now be computed as 3y ;[ B; (x)A(x" = f(x, i

which using Filkorn’s approach can be rewritten as 3;[B;(f(x,1))]. Now the re-
sulting quantified Boolean formula is free from the quantification over state
variables and we are left with the problem of quantifying the input variables.
Thus, if there are fewer primary input variables than next state variables, it is
advantageous to use this simplification.

4.1.1 Quantifying Input variables

While Filkorn’s method allows us to quantify primary input variables instead
of next state variables, it does not eliminate the need for quantification. If,
however, the next state depends only on the present state, then we can express
N(x,x') as /\];:](7"7 & gj(x)). The pre-image of a set B(x') of states can
then be obtained simply as B(g(x)), where g(x) denotes the vector of next
state functions g;. We will henceforth say that a Kripke structure has the
unique successor property if the next state is uniquely determined by the present
state. It follows that backward reachability analysis of unique-successor Kripke
structures does not require existential quantification. This leads to the following
observation: Given an arbitrary Kripke structure, if we “decompose” it into a
set of unique-successor Kripke structures, backward reachability analysis can be
performed without existential quantification.

This is the key intuition behind our work. Once the set of unique-successor
Kripke structures are obtained, techniques analogous to MBM or FBF [14]
can be applied to obtain the backward reachable states from a target set of
states, without using existential quantification. Our problem therefore reduces
to “decomposing” a Kripke structure into a set of unique-successor structures.
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Basic Definitions

Definition 4.1 (Component): A Component of a Kripke structure M =
{S,S0, N, L, AP} is another Kripke structure C = {S¢, S5, N¢, L¢, AP} such
that:

1. S¢=S.
2. S5 = Sy.

3. N®C N and N°€ satisfies unique successor property, that is for s, sy, s €
S; (s,s1) € N¢ and (s,s2) € N¢ implies s1 = so.

4. L¢=L.

5. AP° = AP.

Definition 4.2 (Notion of covering): A component C covers a transition
(s1,82) of a Kripke structure M, if (s1,s2) € N€.

Definition 4.3 (Decomposition): A decomposition D of a Kripke structure
M can be defined as a set of components of M. A decomposition is complete if
every transition of M is covered by at least one component in D. Otherwise, D
is a partial decomposition. A complete decomposition may be viewed as a col-
lection of transition functions, the union of which gives the original transition
relation of M.

Since in each component every state has exactly one outgoing edge, transi-
tion function of the components will be of the form x' = f(x), backward reach-
ability computation over the component can be done without quantification.
Since all the transitions of a Kripke structure M are covered in a complete de-
composition, reachable states of the M are equal to the union of the reachable
states of all the components of the complete decomposition. Hence if we can
find a decomposition of a finite state machine, backward reachability analysis
can be done without existential quantification.

Hence, the problem of existential quantification of inputs reduces to find-
ing a decomposition of the finite state machine.

4.1.2 Minimality Criteria

For a particular finite state machine M, several complete decompositions are
possible. A naive approach to obtain a complete decomposition of M is to
substitute all possible values for the input variables in next state functions
of M one-by-one to generate all components. For example in Figure 4.2.3,
component(c;) can be obtained by substituting (00) for inputs (iiig), N, =
{(#} = 71), (2, = 21)}. But the number of components generated using this
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Figure 4.1: Our Approach

approach would be 2™, where m is the number of input variables.

If a state in the transition graph goes to different states for all possible
input values, that is its out-degree is (2), a minimum of 2 components are
needed to generate a complete decomposition. But fortunately in most practical
circuits, there are lot of overlap of edges in the transition relation. If we exploit
this feature we can expect the number of components to be significantly less
than 2™. We observed that any minimal decomposition of a Kripke structure
should satisfy following properties:

Definition 4.4 (Minimal Decomposition): A decomposition is minimal if:
1. It is complete.

2. There does not exist any other complete decomposition with fewer compo-
nents.

Note that an minimal decomposition may not be unique.

A minimal decomposition can be generated by following the two guidelines
mentioned below:

1. Each of the components should have the maximum uncovered edges, that
is repetition of edges should occur only when all the outgoing edges have
been covered.

2. If a particular transition is covered for an input, the other input values
which give the same transition, should also be considered as covered. We
call such transitions implicitly covered. For example in Figure 4.2.3, the
transition from state (01) to (00) occurs for input (01) and (00) so if we
cover the transition on input (00) , transition from state (01) to (00) on
input (01) will get covered implicitly.
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In the next section, we describe a technique for obtaining a minimal decompo-
sition of a Kripke structure arising out of a deterministic finite state machine.
We will see later that our method generalizes to arbitrary Kripke structures as
well.

Notations

In the following discussion, we will adhere to following notations until specified
otherwise:

e Bold face alphabets are used to represent vectors.

e alphabet x will represent a vector of next state variables {z1, 9, z3, ..., 2.}
and i will represent a vector of input variables {iq,49,43,...,9m}.

e Similarly, f(x, 1) will represent a vector of functions having support set x
and i.

e F will represent the negation of the function F, that is, F = —F.

4.2 Basic Technique for Symbolic Minimal Decom-
position

As we discussed above, the next state of a deterministic finite state machine
can be expressed as a function of the present state and primary inputs. Using
notation introduced earlier, let f(x,1) represent the vector of next state func-
tions. Thus, x; & fj(x,i) for all j in 1 through &, where k denotes the number
of state variables. In order to obtain a component of a decomposition, however,
we must remove the functional dependency of 'r’] on the primary inputs i. In
other words, we must express z; as h;(x) for some suitable function hj;. We
observe that this can be achieved if we express each primary input variable i,
as a function, g;(x), of the present state. Viewed in another way, this amounts
to specifying a primary input combination for each state to help choose an out-
going transition from that state in the deterministic finite state machine. Let
G(x) denote the vector of functions g;(x), where [ ranges from 1 to m (num-
ber of primary inputs). We can then express each z as f;(x, G(x)), thereby
obtaining a component.

To formalize the above intuition, we define a few additional terms.

Definition 4.5 (Uncovered Edge function): Let M be a Kripke structure
arising out of a deterministic finite state machine, and let D be a decomposition
(possibly partial) of M. We define a Boolean function EP(x,i), called the
Uncovered Edge function for D, such that:
EP(x,i) = 1 iff the transition (x,f(x,1)) is not covered by any component in
D.
EP(x,i) = 0 otherwise.

Thus, E?(x,i) =1, and EP(x,i) = 0 for a complete decomposition D.
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Using Uncovered Edge function EP(x,1i), we have to determine the value of
the input vector of functions G(x) , which if substituted for the input variables
in transition relation of M will results in a minimal component of M. We call
this vector Uncovered Input Function Vector.

Definition 4.6 (Uncovered Input Function Vector ): Let m denote the
number of primary inputs of a deterministic finite state machine. Given a (pos-
sibly partial) decomposition D of M, we define a vector of functions GP (x)=
(gP(x),...,92(x)), such that

e If one or more outgoing transitions from state x are uncovered by the
components in D, then (x,f(x,1)) is an uncovered transition.

e If all outgoing transitions from state x are covered by components in D,
then (x,f(x,1)) is a covered transition.

Note that there could be multiple vectors G (x) satisfying the above condition,
for a given finite state machine and decomposition D.

Intuitively, GP(x) gives a combination of primary input values that takes state
x to state x' in the finite state machine, where (x,x") is not covered by any com-
ponent in decomposition D. Every vector G (x) satisfying the above conditions
is called an uncovered input function vector for decomposition D.

Definition 4.7 (Implicitly Covered Edge Function ): Given an uncov-
ered input function vector G(x), the implicitly covered edge function is
a Boolean predicate, SG(x,1), that evaluates to 1 iff f(x,i) & f(x,G(x)). In
other words, S€(x,1) indicates whether application of primary input i in state
x of the finite state machine takes us to the same state as the application of
primary input G(x).

4.2.1 Computing Uncovered Input Function Vector

Problem Statement Given an Uncovered Edge function EP(x,1i), find
G(x) = {(i1 = g1(x)),(i2 = g2(x)), ..., (im = gm(x))} which takes a
state x as input and gives value of input 41, ..,%,, corresponding to an
uncovered transition from x.

For the sake of simplicity, assume that there is only one input variable.
Now, given uncovered edge function EP(x,i), we have to compute uncovered
input function vector G(x) = {(i = g(x))} to generate a component for the
minimal decomposition. As clear from the Figure 4.2, for a given uncovered
edge function EP(x,1), for each state x following four cases are possible:

1. From the state x the edge labeled with input ¢ = 1 is uncovered and
i = 0 is covered (Figure 4.2.a). Hence to produce a component, we should
choose the transition corresponding to i = 1. So in this case g(x) = 1.
Let us characterize this case by fi(x).
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Figure 4.2: Uncovered Edge function: all possible cases

=1

a b

2. From the state x both the edges, that is, with ¢ = 0 and ¢ = 1 are
uncovered (Figure 4.2.b). Hence we can choose any edge without violating
the minimality property. In this case, g(x) may be any function of x. Let
this function be u(x). Let us characterize this case by fo(x).

3. From the state x both the edges, that is, with + = 0 and ¢ = 1 are
covered (Figure 4.2.c). Hence we can choose any edge without violating
the minimality property. In this case also, g(x) may be any function of
x. Let this function be v(x). Let us characterize this case by f3(x).

4. From the state x the edge labeled with input ¢ = 0 is uncovered and
i =1 1is covered (Figure 4.2.d). Hence to produce a component we should
choose edge corresponding to i = 0. So in this case g(x) = 0. Let us
characterize this case by f4(x)

Based on the above observations, we can derive the value of uncovered input
function g(x) as

g(x) = fi(x).1+ fa(x).u(x) + f3(x).0(x) + fa(x).0
= fi(x) + fa(x).u(x) + f3(x).v(x) (4.1)
Given uncovered edge function EP(x,i), fi, fo and f3 can be computed as:
fi(x) = E”(x,1) A EP(x,0) (4.2)
f2(x) = EP(x,1) A EP(x,0) (4.3)
f3(x) = EP(x,1) A EP(x,0) (4.4)

Hence given the uncovered edge function E”(x,1), uncovered input function
g(x) can be computed using equations 4.1, 4.2, 4.3 and 4.4.

Generalization

The above procedure for computing G(x) for one input variable can be gener-
alized for any number of inputs in following manner. We consider each input
one-by-one and consider other inputs as state variables and use the formula 4.1
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to compute the value of uncovered input function for that input. For example,
suppose our uncovered edge function is EP(x,i1,...iyn_1,4m). We can compute
N————

uncovered input function corresponding to input 4., as iy, = Gm (X, 01,0 b 1)

using the equation 4.1. Now we substitute the uncovered input function g,, for

the input 7., in the uncovered edge function as E) = E(x,i1,...im 1, gm(...)) or

EP(x,i1,...,im 9,9m 1). Now g, 1 can be computed in similar manner using
—_———

EDP as the uncovered edge function. Similarly we can compute uncovered input
function g; for each input variables i to generate uncovered input function vec-
tor G(x). Now, to generate a component, we replace each input variable for
corresponding uncovered input function, in the order they are computed, to get
a component of M towards minimal decomposition.

Updating Uncovered Edge function

After generating a component, we need to update the uncovered edge function
by eliminating all implicitly covered edges by that component. The edges cov-
ered by a component S (x,i) can be computed using the Definition 4.7. Then
to exclude these edges from the uncovered edge graph we compute the uncovered
edge graph as EP(x,i) = EP(x,i) - SG(x,i). The algorithm for computing the
covered edges is shown below:

Algorithm 4.2.1: CoMPUTECOVEREDEDGES(C, f)

/ * To compute the set of covered edges of M by a component C
C : A component of the finite state machine M;

G(x) : Uncovered Input Function Vector of component C;
f(x,i) : Transition Function Vector of M;

n: number of state variables

return f(x,i) < f(x, G(x))

Example 4.2 Let us consider the finite state machine described in example
4.1. The transition function of this finite state machine is as follows:

1 .
Ty = T1+11.79

’I'frz:’l'l

To find a minimal decomposition, let us first define uncovered edge function
EP(x,i) = 1 where D = ¢.

Taking u(x) = 0 and v(x) = 0, from equation 4.1 and equation 4.2:

9(x) = f1(x) = EP(x,1) A BD(x, 0)

Computation of the components is given below:

First Component
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i1 =g1(z1,22) =0

after replacing i1 by g1 in uncovered edge function, EP(x,i) = 1.
ig = g2(r1,22) =0

So, the first component will be:

!

fE] = I
!

.TQ = I

This component is shown in Figure 4.2.3 as component cy.

Covered transitions by this component can be computed using Definition 4.7 as:
SG(.T],.TQ,’i],iQ) = (((.’I)] + 7 - 1132) = .I]) . (LE] = .I]))

SG(X, 1) = I —|—E] —+ Z9.

New uncovered edge graph would be:

E'D(X,i) = ED(X, 1) . SG(X, 1) =1- (.’E] +g] + ig)

ED(X,i) =21-11 T

Second Component

11 = gl(X, ig) = ED(X, ia, 1) A ED(X,iz,O) = T1T2

after replacing i1 by g1 in uncovered edge function, EP (x,i) = Z,x5.
is = g2(x) = EP(x,1) A EP(x,0) = 0

So, the second component will be:

!

7 = T1+ T2
!

.'.EQ = I

This component is shown in Figure 4.2.3 as component cs.

Covered transitions by this component can be computed using Definition 4.7 as:
SG(.T],.TQ,’i],iQ) = (((.’I)] + 17 '1132) < T +$2) . (.T] = LE]))

SG(x,i) = 1.

New uncovered edge graph would be:

EP(x,i) = EP(x,i) - SG(x,i) = (Z - i1 - 22) - (1) = 0

Since, uncovered edge function is 0, there exists no uncovered edges. So we
can terminate the generation of the component. The minimal decomposition

D= {Cl, (32}.

4.2.2 Algorithm

In the computation of uncovered input function g(x), u(x) and v(x) can take
any value. As we know from previous discussion, computation of the functions
f1, fo and f3 involves taking cofactor of uncovered edge function EP(x,4) for
both values of i. However, if we select the values of tunable functions u(x) and
v(x) properly, we can save one cofactor computation. For example, if u(x) is
taken as 1 and v(x) is taken as 0, the equation 4.1 reduces to:

9(x) = fi(x) + fa(x) = E”(x,1)

The pseudocode for generating a minimal decomposition of the Kripke struc-
ture and a component is given as Algorithm 4.2.3 and Algorithm 4.2.2 respec-
tively. In these algorithms we use u(x) = 1 and v(x) = 0 to minimize compu-
tation efforts.
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Algorithm 4.2.2: GENERATENEXTCOMPONENT1(EP, f)

/ * To Generate A Component Using Basic Graph Decomposition x /
EP(x,i) : Uncovered Edge Function
f(x,i) : Transition Function Vector of Original Kripke structure
/ * x is n — dimensional state vector and i is m — dimensional input vector x /
rErg+1 — ED(xv i)
Copr = Ny () & (1))
for k < m downto 1
Taking u(x)=1 and v(x)=0

d cog@pute ng(x, WMy eeyip_1) from (EI?H (x,1))1/i,
B (B g /i
Cr, (Ck+])gk-/ik
| return C;

Algorithm 4.2.3: GENERATEMINIMALDECOMPOSITION(f)

/ * To Generate A Minimal Decomposition of the Kripke structure x |
f(x,i) : Transition Function Vector of Original Kripke structure
/* n : number of state variables, m: number of input variables x /
(local EP(x,i) : Uncovered Edge Function
local D : Decomposition
local C : Component
D « ¢
EP(x,i) + 1
repeat

C <+ GENERATENEXTCOMPONENT1(EP f)

COV <« CoMPUTECOVEREDEDGES(C, f)

EP « EP ACOV

D « DU{C}
until EP = ¢
Lreturn D

4.3 Counter-example focused Graph Decomposition

In the decomposition scheme discussed in last section, to generate a compo-
nent we select the edges to be covered in that component randomly. So while
computing the backward image, a large number of components may require
before termination of the algorithm; even if the counter-example is of small
length. To overcome this disadvantage, we can guide the decomposition pro-
cess in such a way that while selecting the transitions for a component, it prefer



4.3. COUNTER-EXAMPLE FOCUSED GRAPH DECOMPOSITION 39

those edges which can possibly lead to a counter-example. We call this scheme
Counter-ezample focused Graph Decomposition.

4.3.1 Basic Technique

The main idea behind this scheme is to search the counterexample using as few
components as possible. This is achieved by preferring those edges, which can
possibly be the part of the counterexample in the generated component, over
other ordinary edges. One way to select “preferred edges” is to choose those
edges which are (1) uncovered and (2) coming directly from an state outside
the set of failed states to any state in the set of failed states. Failed states are
those states which are known to have transitions into Bad states. Preferring
such edges guarantees that if there exists any edge which causes an initial state
to make transition to a failed state in one step, new component will cover that
edge. To implement it, we need a function which takes a state assignment as
input and can give us the “preferred edges”. We call this function “preferred
edge function” PP (x,1i).

Definition 4.8 Preferred edge function is a Boolean function PP (x,i), such
that:

PP (x,i) = 1 iff (1) state x is not a failed state and from state x on input i
there is a transition to any failed state and (2) edge (x,1) is not covered in any

of the previously generated components.
PP(x,i) = 0 otherwise.

If Fail(x) represent the set of fail states, then Preferred edge function can
be computed using following equation:

PP(x,i) = EP(x,i) A (Fail(x) A Fail(f(x,1)))

where EP(x,1) is uncovered edge function.

Computing Uncovered Input Vector

Problem Statement Given a Preferred Edge function PP (x,i) and
an Uncovered Edge functionEP (x,i), find G(x) = {(i1 = g1(x)), (iz =
92(X))s -y (i = gm(x))} which takes a state x as input and gives value
of input i1, .., ¢,, corresponding to preferable transition from x.

While deciding the transitions to be covered in a component, our decompo-
sition algorithm always tries to choose an edge (transition) from Preferred edge
function. If there exists no preferred edge, it can select an edge from Uncovered
edge function. Using a similar reasoning to basic decomposition algorithm, un-
covered input function can be computed as:

g(x) = [ (%) + f5 (x).u” (x) + 3 (x).0" (x) (4.5)
Where fI, fF and ff can be defined as
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fI(x) = PP(x,1) A PP(x,0)

fF (x) will be true if from the state x the edge labeled with input i = 1 is
a “preferred edge” and ¢ = 0 is a non-preferred edge. Hence to generate
the new component we choose edge corresponding to 1 = 1.

fQP(X) = PD(Xa 1) /\PD(XaO)

f¥(x) will be true if from the state x both the edges, that is, with i = 0
and i = 1 are preferred. Hence we can choose any of them. So u”(x) can
be any function of x.

fi (x) = PP(x,1) A PP(x,0)

f¥(x) will be true if from the state x both the edges, that is, with i = 0
and ¢ = 1 are not there in “preferred edge function”. Now we can choose
any edge from uncovered edge function. So from equation 4.1, v¥(x) can
be computed as:

o (x) = fr(x) + fa(x).u(x) + f3(x).0(x) (4.6)
where f1, fo and f3 are same as defined in 4.2, 4.3 and 4.4.

4.3.2 Exploiting Tunable Parameters

In the computation of g(x), the functions u”(x),u(x) and v(x) can take any
value. As we know from previous discussion, computation of the functions
L P fE ) f1, f2 and f3 involves taking cofactor of PP (x,4) and EP(x,i) with
respect to both assignments of . Since computation of cofactor with respect
to both values of 7 has the complexity similar to that of quantification (equa-
tion 2.1), we would like to choose the values of the tunable parameters such that

we can save at least one cofactor operation. Below we are giving one possible
choice of u” (x), u(x) and v(x) that allows us to compute g(x) taking only one
cofactor of PP (x,4) and EP (x,1).

g(x) = f1(x) + f5 (x).u” (x) + f§ (x).0" (%)
and 0 (x) = f1(x) + fo(x).u(x) + o (3).0(

So g(x) = fI"(x) + f3 (x).u” (x) + f3 (x).(f1(x) + f2(x).u(x) + f3(x).0(x))
Putting u” = 0,u=1and v =0:

g(x) = fi (%) + f5 (x).(f1(x) + fa(x))

x)

since f{(x) C (f1(x) 4 f2(x))./ * From the definition of Preferred Edge function % /

g(x) = f(%).(f1(x) + f2(x)) + f5 (x).(f1 (%) + fa(x))
g(x) = (f{' (%) + f5'(x)).(f1 (%) + f2(x))
g(x) = PP(x,0).E”(x,1)

(4.7)
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4.3.3 Algorithm

The algorithm for generating a new component is given below. It takes pre-
ferred edge function, uncovered edge function and transition function of the
Kripke structure as input and generates a component.

Algorithm 4.3.1: GENERATENEXTCOMPONENT2(EP, PP f)

/ * To Generate A Component Using Counterexample Focused x

* Decomposition * /
EP(x,i) : Uncovered Edge Function
PP(x,i) : Preferred Edge Function
f(x,i) : Transition Function Vector of Original Kripke structure
/*n : number of state variables, m : number of input variables * /
(EP |+ EP(x,i)
PD |+ PP(x,i)
Crt — Ny (@ & £5(x.)
for k < m downto 1
{ compute gr(X,i1,...,ik_1) from ((E,?H(x, )13, - (Pk’il(x, i))osiy)
do EP — (B ) gu i
PkD = (Pkl?l-l)gk/ik

Cr (Ck+])gk/ik

([ return Cy;

After computing the component, set of covered edges by this component
can be computed using Definition 4.7. In next chapter, we discuss an approach
for checking safety properties over finite state machines using the decomposition
approach discussed here.
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Chapter 5

Lazy Decomposition

We are interested in checking safety properties over a large Kripke structure
with large number of input variables. In the previous chapter, we explained that
the need of quantification over input variables can be removed by performing
reachability over the decomposition of the finite state machine. In this chapter,
we present an efficient method for checking “safety properties” over the decom-
position of the finite state machine. We call this algorithm Lazy decomposition.
In the following text we are considering only backward reachability. At the end
of the chapter, there is a note on extending this technique to perform forward
reachability.

5.1 Basic Idea

Given a finite state machine M with next state transition function x’ = f(x, 1),
a set of initial states Init(x), and a set of Bad states, characterize by Fail(x);
we wish to explore whether a state in Init(x) can reach a state in Fail(x) via
the transitions of M. This is also known as safety problem.

A naive approach for checking a safety property over a finite state machine
M would be computing a complete decomposition (D = {Cy, Cs,...Cy}) of the
Kripke structure using basic decomposition approach and traverse each com-
ponent serially and iteratively until one of the following condition occurs: (1)
fixed point in computation of the backward reached set Bi(x) is obtained, or
(2) backward reached set intersects with set of initial states. In the first case,
we can conclude that M respects the property and in the second case, we can
produce a counterexample showing the unsafe behavior of the system. This
way of traversing the components is called as machine-by-machine (MBM) [14]
traversal. Alternatively, we can traverse the components using an approach
called frame-by-frame(FBF) [14]traversal. In FBF, instead of traversing C!"
component before processing component C; 1, as the MBM procedure does, we
handle all components in parallel, and the traversal is a one-sweep process. We
start traversing each component starting from set of fail states, and pre-image
of the set is computed; then all component moves one time frame back and

43
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another pre-image is computed(one per component) of the backward reached
set. The traversal is terminated on either of two conditions discussed above.

Irrespective of the traversal method used, the above approach has a seri-
ous drawback. In this approach, complete decomposition is computed before
starting the image computation process. Since generating a component is an
expensive operation, we would like to avoid it as far as possible. We observed
that it is not always necessary to compute complete decomposition in order to
check the safety property over the finite state machine. It may so happen that
using the partial decomposition we may detect a path from an initial state to
a bad state. This is the main motivation behind Lazy Decomposition.

In lazy decomposition algorithm, we generate a new component only when
the safety problem is not answerable using the current partial decomposition.
In next section we explain the intuition behind the approach with the help of
an example. Later we give a formal pseudocode of the algorithm and explain it
briefly. In the following discussion, we use the term Isolated Set of states quite
often. We have defined it as follows:

Definition 5.1 (Isolated Set of states): A set of states S of a Kripke struc-
ture M is called as isolated set, if there exists no state outside of the set S, that
can reach a state inside S via the transition relation of M.

Check for isolated set of states can be performed using Algorithm 5.1.1.

Algorithm 5.1.1: ISOLATE(f(x, 1), S(x))

/% Checks If a Set of states is an Isolate set on states x /
S(x) : some set of states ;
f(x,i) : Transition Function Vector of a FSM M;
if SAT(S(x) A S(f(x,1))) = true
then return false;
else return true;

5.2 Example

Let us consider the finite state machine shown in Figure 5.1. Let the set of state
variables is x = {21, 22} and corresponding next state version is x’ = {z, 2}, }.
i1 and iy are the input variables. Next state function of this finite state machine
will be:

113’1 =x1 + 21.29

’I"QZ’I'l

Here set of initial states is Init(x) = Ty - T2 (00) and set of bad states is
Bad(x) = x1 -z (11).
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Lt NN

Figure 5.3: Second Component decomposed

In this example, set of initial states Init(x) (00) is not intersecting with
Bad states Bad(x) (11).

Here set of bad states Bad(x) (11) is also not an isolated set as there is
a transition from the state (10) to the state (11). It can be checked using
Algorithm 5.1.1.

Let us initialize the partial decomposition as null set, i.e. D, = {}.

Since no edge of the Kripke structure M is covered by any component of
the partial decomposition D, D) is not a complete decomposition. Now
we generate a component of the Kripke structure using counter example
focused decomposition.

Component Cy is generated (Figure 5.2.A) using the Algorithm 4.3.1.
Now D, = {C\}.

After performing backward reachability over component C, fixed point
is detected (Figure 5.2.B). At this point set of backward reached states
is (11, 10) or F'(x) = z1. This set is also not an isolated set of states as
there is a transition from the state (01) to state (10). It can be checked
using Algorithm 5.1.1.

It is clear from the Figure 5.1 and Figure 5.2 that transition from state (01)
to state (10) is not covered by the component C;. Since all the edges of
M are not covered in component C1, D, is not a complete decomposition.
Now we have to generate another component.

Component Cy is generated using the decomposition Algorithm 4.3.1.
Now new partial decomposition would be D, = {Cy,C>} (Figure 5.3).

Using MBM traversal of partial decomposition D,,, we traverse C first.
After reaching fixed point in Cy, state (01) will also get included in set
of Failed states. Now we consider component C; for traversal. In this
component we also reach fixed point in first iteration only. After reaching
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Figure 5.4: Fixpoint in both components

fixed point in both components (Figure 5.4), we check whether set of
failed states constitute an isolated set of states. In this case it is true.
Now the algorithm gets terminated by declaring the system safe.

The algorithm for machine by machine traversal (MBM) of the partial de-
composition is given in Algorithm 5.2.1. The pseudocode for checking the
safety property of the Kripke structure using lazy decomposition is given in
Algorithm 5.2.2. In the next section we briefly explain the steps of the Lazy
decomposition algorithm.
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Algorithm 5.2.1: TRAVERSEPARTIALDECOMPOSITION(D,,, var Fail (x))

/ * MBM traversal of Partial Decomposition Dy, * /
Fail(x) : set of backward reached states/ x passed by reference * /
global Init(x) : set of initial states
D, : partial decomposition containing n components of M.
£e(x) : transition function vector of ith component .
(local fixpoint : Boolean
local traverse : Boolean
fizpoint < false
while fizpoint = false
( fixpoint < true
fori+ 1ton
do / % For each component do x /
(traverse « true
$ while traverse = true
( Failgq(x) < Fail(x)
do [« Fail(x) < Fail(ff(x))
if SAT (Init(x) A Fail(x)) = true
then return false
if SAT(Fail(x) A Failyq(x)) = false
then traverse < false
1 Fail < Failyg A\ Fail
L ¢S fizpoint < false

do «
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Algorithm 5.2.2: CHECKSAFETYPROPERTY(f(x,1), Init(x), Bad(x))

comment: Checking the Safety Property Using Lazy Decomposition

Init(x)
Bad(x)
f(x,1)

. set of initial states
: set of bad states

. Transition Function Vector of the FSM M
(local Fail(x) : set of backward reached states
local D, : Partial Decomposition of M

local EP(x,i) : Uncovered Edge Function
local PP (x,i) : Preferred Edge Function

if SAT (Init(x) A Bad(x)) = true

Fail(x) < Bad(x)
EP(x,i) + 1
PP(x,i) «+ EP(x,i) A (Fail(x) A Fail(f(x,1i)))

< while true

(local C : component

local result : Boolean

local covered(x,i) : set of covered edges by a component

Dy, + D, U{C}

if result = false

do ¢ .
then return “system is not safe”

covered(x,i) < CoMPUTECOVEREDEDGES(f(x,1),C)

covered(x,1) < covered(x,1) V Fail(x,1)

EP(x,i) + EP(x,i) A covered(x, i)

PP (x,i) «+ EP(x,i) A (Fail(f(x,i)))

if SAT(PP(x,i)) = false

L then return “System is safe”

then return System M is not safe / * step — 1%/
if ISOLATE(f(x,1), Bad(x)) = true

then return System M is safe / * step — 2 % /
Dy < {} [ x step — 3 x /

C + GENERATENEWCOMPONENT 2(EP (x,1), PP (x,1),f(x,i))/ * step — 5 % /
result <~ TRAVERSEPARTIALDECOMPOASITION(D,,, Fail(x)) /* step — 6 x /

[ x step —Tx/

[ * step —4x [/
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5.3 Algorithm

In this section we explain our approach for checking the safety property prop(x)
over a finite state machine M (f(x,1), Init(x)), where f(x,i) represents the
next state transition function vector of the finite state machine and Init(x))
characterize the initial set of states. We characterize the set of bad states
Bad(x) = prop(x). The pseudocode of the approach is given as Algorithm 5.2.2.
The basic steps of the algorithm are explained below:

1.

The algorithm start the reachability analysis by initializing the set of
backward reached states( also called as failed states Fail(x)) to set of
bad state Bad(x). At this point in time it checks whether set of initial
states Init(x) intersects with set of failed states. If it is the case, then
the search is terminated by declaring the system unsafe and producing
the counter-example, otherwise it will perform step 2.

Now algorithm checks whether set of bad states Bad(x), is an isolated set
of states. If yes, then it halts by declaring the system safe, as there exists
no state out of set of bad states that can make transition into Bad(x).
Otherwise it will continue with step 3.

Next, it initializes the partial decomposition D) as a null set.

. Here algorithm checks if the decomposition is a complete decomposition.

This can be checked by looking at the satisfiability of the preferred edge

function PP (x,i). If PP (x,1) is unsatisfiable then it means that current

set of reached states is an isolated set of states. So this implies that
the fixed point of the finite state machine M is reached; now algorithm
terminates by declaring the system safe; otherwise it performs next step.

Now the partial decomposition D), is modified by generating a new com-
ponent of M using counter-example focused decomposition (see Algo-
rithm 4.3.1) approach and adding it to partial decomposition.

Now algorithm traverse the components of partial decomposition D,. Any
approach, that is MBM or FBF, for the traversal of partial decomposition
D, can be used. According to Cho et al. [14], MBM traversal results
in faster exploration of counterexample. We have implemented MBM
algorithm for the traversal of partial decomposition. The pseudocode of
this algorithm is given in Algorithm 5.2.1.

If traversal of partial decomposition finds a counterexample, the algorithm
terminates by declaring the system unsafe. If a fixed point is reached using
the partial decomposition, then it checks whether set of backward reached
states constitutes an isolated set of states. If yes, then the algorithm
terminates by declaring the finite state machine safe; otherwise we can
not conclude that the system is safe, as a partial decomposition does not
cover all the transitions of M and it may possible that any transition that
is not covered in any of the components of the partial decomposition may
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cause the system to fail. So in this case, algorithm tries to generate a new
component and continues from step 4.

5.4 Forward Reachability

The Lazy decomposition algorithm introduced in this chapter deals with back-
ward reachability. The same algorithm can be used to work with forward reach-
ability also. To compute the states reachable in one step using forward reacha-
bility (equation 3.1) we need to do existential quantification over current state
variables. This need of quantification over state variables can also be removed
in the same way as we removed for input variables.
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Chapter 6

Implementation and Results

The technique proposed in this thesis is implemented to work with BDDs and
SAT solvers. In next section, we discuss some of the important features of
our implementations. In section 6.2, we describe the experiments with these
implementations and discuss the results.

6.1 Implementation

The proposed algorithm is implemented using NuSMV2.0, an open-source model
checking framework developed by IRST. NuSMV2.0 provides extensive set of
functions needed for both BDD and SAT based model checking. NuSMV uses
the state of the art BDD (CuDD) package developed at Colorado University,
and provides a general interface for linking with state-of-the-art SAT solvers.

NuSMV takes the model of finite state machine written in SMV [5] language
as input. In our implementation, we have written a parser to parse the language
of ISCAS89 benchmark (a restricted subset of verilog). We also modified the
syntax to read specifications (initial states and bad states) from a separate file.
We have implemented the lazy decomposition algorithm using both SAT and
BDD based engines. Each implementation is discussed below:

6.1.1 SAT-based Implementation

Representation of the formulas: NuSMV?2.0 supports Reduced Boolean Cir-
cuits (RBC) [19, 10] to represent the Boolean formulas for SAT based model
checking. RBCs are non-canonical representation of the Boolean formulas. Non-
canonicity has both advantages and disadvantages: Non-canonical data struc-
tures can be more succinct than canonical ones sometimes exponentially more.
On the other hand, determining satisfiability of non-canonical data structures
is hard, whereas with canonical data structures (like BDDs) it is constant time
operation.
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The fundamental operations for symbolic model checking are (1) quantifi-
cation, for computing the image of a set; (2) satisfiability checking, for fixpoint
checking; and (3) Simplification, for space efficient representation. The state-
of-the-art of our RBC-based implementation with respect to these operations
is given below:

Quantification: In our algorithm this step is not required, as we are elim-
inating the need of quantification by using partial decomposition for model
checking instead of the monolithic Kripke structure.

Satisfiability Checking: To check the satisfiability of a Boolean expres-
sion in RBC, we convert it to CNF before passing it to SAT solvers. RBCs
represents a Boolean formula using only two binary connectives, that is con-
junction (A) and bi-implication (). Conversion of the RBC (a DAG) to CNF
can be done by introducing an auxiliary variable at each non-terminal. Thus:

é(z Ay) is converted to (a; < (£ Ay)) A ¢(a;)

#(z & y) is converted to (a; & (z < y)) A ¢(a;)

where a; is the new auxiliary variable for each non-terminal node of the RBC.
For the intermediate subformulas, the following clauses are generated:

a; < (z Ay)) produces{a;, z,y},{a;, =}, {a;, y}

a; < (-’E = y)) prOduces{aia z, y}a {aia jag}a {aia z, g}a {aiajay}

We are currently using SIM sat solver that is based on DPL algorithm (
DP*). In SIM, splitting is not performed on auxiliary variables.

Simplification: The goal of simplification is to avoid doing repetition of
calculation . By drawing conclusions from a formula and simplify it accordingly,
we save the unnecessary overhead for symbolic model checking. Unfortunately,
RBC do not provide sophisticated algorithms for Boolean formula simplifica-
tion.

Function composition is the most critical operation in our algorithm. In our
algorithm, we essentially reduced the problem of existentially quantifying over
propositional variables to function composition. Function composition opera-
tion in RBCs is very inefficient as they do not offer global simplification of the
resulting RBC after function composition. This results in space blowup after
each function composition operation.

Currently we are handling the problem in an ad-hoc way by converting the
RBC to BDD. Since BDD is a canonical representation, the conversion simpli-
fies the formula and then we convert it back to RBC. The complexity of the
algorithms for this conversion is polynomial in the size of the graphs.
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6.1.2 BDD-based Implementation

In BDD based implementation, we used CuDD package for BDD manipulation.
For all three fundamental operation, BDD performs better than RBC. Since
BDD is a canonical data structure, no simplification is required for BDD based
representation and satisfiability can also be checked in constant time. How-
ever, the restriction imposed by canonicity can in some cases results in space
blowup, making memory the bottleneck in the application of the BDD based
algorithms. The size of the representation can be reduced to some extent by
providing efficient variable ordering, but that requires manual intervention and
reduces the degree of automation.

6.2 Experimental Results

We compared traditional monolithic Kripke structure based algorithms with
our lazy decomposition scheme. In BDD based implementation, we compared
it with backward reachability algorithm of original NuSMV. In the case of RBC
based implementation comparison is done with state of the art SAT based model
checking that uses quantification-by-substitution rule for quantifier elimination
over state variables. In the discussion that follows, we refer to each traditional
model checking implementation as monolithic implementation.

We used ISCAS89 benchmark suite is used for the experiments. We used eight
set of initial state and bad state combinations with each circuit and average of
these eight combinations is reported. These combinations are listed below. We
will refer each combination as ¢y, co, c3 and c4:

1. (c1) Initial states: All 0’s and bad states: All 1’s.

- (c1)
2. (c2) Initial states: All 1’s and bad states: All 0’s.
- (c3)

3. (c3) Initial states: All 0’s and bad states: Alternating 1’s and 0’s.

4. (c4) Initial states: Alternating 1’s and 0’s and bad states: All 0’s.

All the tests were carried out on a Linux 1686 PC with two 997.533 MHz
pentium-ITI processors with 2GB memory. An upper limit of 30 minutes was
set for each experiment. Figure 6.2 and Figure 6.3 shows the results of the tests
performed on six circuits from the ISCAS89 benchmark suite. The experimen-
tal results reported in the thesis correspond to circuits of significant complexity

In BDD based implementation (figure 6.2) column “CPU Time” shows the
average of the CPU time ( system time + user time) for all the combinations for
which computation terminated within 30 minutes.The column “not terminated”
lists all those combinations for which algorithm did not terminated within 30
minutes. Time for the computation of the transition function and transition
relation is also included in the reported time. For lazy decomposition based
implementation, mazimum number of components reported in all the combina-
tions. Average number of BDD nodes used is also reported with each result.
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) . No. of | nput No. of State
Greuits)  yarjabl es Vari abl es
s510. v 19 6
s526. v 3 21
s820. v 18 6
s1488. v 8 6
s444. v 3 21
s420. v 18 16

Figure 6.1: ISCAS89 Benchmark suite

BDD MONOLITHIC

BDD LAZY DECOMPOSITION

Circuits CPU BDD Not CPU BDD Not No. of
Time(sec) Nodes Terminated | Time(sec) Nodes |Terminated Components
s510.v 2.655 365014 1.0375 199474 2
s526.v 49.9225 4295681 0.5225 49987 2
s820.v 0.300 18847 0.335 17278 5
s1488.v 0.2875 4316 0.2825 3666 3
sAddv 116 512126 0.2675 1382 0
s420.v 116 393512 | cl,c2,c3 3.428 686224 2

Figure 6.2: Experimental results for BDD based implementation
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RBC  MONOLITHIC RBC LAZY DECOMPOSITION

ciraits | GV | R8Y Not Noof | CPU  |RBC/ Not No.of | Noof

Time(sec) | BDD Nodes| Terminated | Compose) Time{sec) |BDD Nodes | Terminated | components| Compose

1010 / 560 30874/

510V 4.2050 97806 16.993 111754 2 608
636/ 60 1557/

526V 15775 4674 2.9025 517 3 160
906/ 8051/

s820.v 16125 171 | 9.002 2115 6 819

9581

636/ 1557/

s488v | 15775 | 4675 60 |29025 | 57 2 160
2291 269/

say | 16225 872 6 |15725 872 0 0

A0V cl.c2,¢c3 &11 c2,¢3,

Figure 6.3: Experimental results for RBC based implementation

In the current implementation, there are some problems with the accounting of
the BDD nodes. We report the exact number of BDD nodes in the final version
of the thesis.

For RBC based implementation, “CPU time” column lists the average time
( user time + system time) taken by the algorithm for all the combinations for
which computation terminated within 30 minutes. Column RBC/BDD nodes
lists average RBC nodes taken by the algorithm and total BDD nodes required
for the simplification of the generated RBCs. Here also number of RBC and
BDD are erroneous. The figure presented can be treated as upper bound for the
number of nodes. Column labeled “Not terminated” lists all those combinations
for which particular algorithm did not terminate within 30 minutes. In addition,
column “No of compose” shows total number of function composition operations
performed by the algorithm. For lazy decomposition the maximum number of
components generated is also reported.

6.3 Conclusions

6.3.1 BDD based Implementation

Experimental results ( Figure 6.2) shows that our algorithm performed better
than traditional model checking algorithm both in terms of BDD nodes and in
terms of CPU time. One important thing to note is that number of components
required to verify the property are also very less. This proves the efficiency of
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our lazy decomposition based technique. However, there exists some examples
( 8820.v) for which the performance of our circuits degrades. This can hap-
pen when our choice of successive components does not lead us to the early
detection of the counterexamples. Nevertheless, our approach guarantees that
counterexample of length k will get detected in less than k components. Another
interesting thing to note is that in some combinations we got the counterex-
ample without decomposing the Kripke structure ( 0 components). This can
happen when bad set of states constitutes an isolated set of states.

6.3.2 RBC based implementation

Experimental results of Figure 6.3 shows that lazy decomposition technique
performed worse than traditional model checking in the terms of both memory
and CPU time. The reason behind that becomes more clear after looking at
number of function composition operations. In almost every case, number of
composition operation with our technique is greater than that in monolithic
model checking and as we discussed earlier, RBC is not very efficient for function
composition. More number of composition operation implies more bigger RBCs
and that implies more calls to RBC to BDD conversion. This in turns results
in more CPU and memory resource consumption. This suggests that RBC is
not a very good choice for implementing “lazy decomposition” algorithm unless
good techniques for function composition and RBC simplification exists.



Chapter 7

Conclusion

It is a widely recognized fact that the complexity of the systems containing
hardware and software components is growing. The technology race combined
with small inexpensive microprocessors has made it such that our society is giv-
ing computer control to everything possible. From washing machine to medical
equipments, from air-crafts to spacecrafts and from kids toys to nuclear weapon
systems. Therefore computer scientists are faced with the problem of designing
safety critical systems of large complexity.

Symbolic model checking is an approach to ensure the correctness of such
systems. However state of the art is such that it is not possible to deal with
complexity of all classes of the systems using a single approach. In this the-
sis we reviewed various symbolic model checking approaches that works well
with certain class of problems. The approach proposed by us provides one
more alternative which can handle certain systems with ease on which previous
approaches takes more time.

We showed that quantification elimination from the Boolean expressions can
be done by decomposing the Kripke structure into components. Experimental
results demonstrate that the technique is practical and promising if the repre-
sentation is efficient for function composition.

7.1 Future Work

In particular, there are several ways in which the current implementation might
be improved. In the first place, our SAT implementation is highly inefficient,
since it uses a data structure (RBC) which do not provide simplification of the
Boolean formula. In addition the current algorithms for function composition
are not very sophisticated. We believe that the performance of our SAT based
implementation can be improved by using a suitable data structure.

Secondly, currently we are handling only safety properties of the systems.
Extending this technique to do full CTL model checking would be worth con-
sidering.

99



60 CHAPTER 7. CONCLUSION

Recently, there has been increased interest in using multiprocessor systems
or workstation clusters to deal with state explosion problem. These systems
often have a very large (distributed) main memory. Furthermore, the large
computational power of such systems also helps in effectively reducing model
checking time. Our decomposition based algorithms are inherently amenable
to concurrent reachability analysis. Our work can also be extended to run in
distributed fashion to take advantage of multiprocessor systems.
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