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Abstra
tModel Che
king is a highly automati
 veri�
ation te
hnique for �nite state 
on-
urrent systems. In this approa
h for veri�
ation, temporal spe
i�
ations areexhaustively veri�ed over the state-spa
e of the 
on
urrent system. The num-ber of states grows exponentially with the 
on
urren
y of the system and thatmakes expli
it state-spa
e enumeration based te
hniques ineÆ
ient. This phe-nomenon is 
alled state spa
e explosion. One of the possible way to over
omethis limitation is to avoid expli
it enumeration of state spa
e. These approa
hes,
ommonly known as Symboli
 Model Che
king [4℄, uses Boolean formulas to rep-resent sets of states and transition relations. Traditionally, symboli
 model
he
king has be
ome identi�ed with Binary De
ision Diagrams (BDD)[3℄, a
anoni
al form of representing Boolean formulas. But re
ently, some otherrepresentations like Conjun
tive Normal Form (CNF) using satis�ability solv-ing (SAT) and polynomial algebra have been demonstrated to be quite powerfulin pra
ti
e.In this thesis, we propose an approa
h to symboli
 model 
he
king wheremodel 
he
king is performed by de
omposing a �nite state system into 
om-ponents. We �rst review the de
omposition pro
ess proposed by Chakraborty& Soni [21℄ and enhan
e it by guiding the pro
ess of de
omposition. We ob-served that 
omputing the 
omponents of the system is an expensive operation.Therefore our approa
h 
omputes a new 
omponent only if the information inexisting 
omponents is not suÆ
ient to prove (falsify) the safety property. We
all this approa
h Lazy de
omposition.The ideas are evaluated on publi
ly available ben
hmarks from ISCAS-89ben
hmark suite using BDD and SAT based implementations. We report theexperimental results and 
ompare it with earlier s
hemes.
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Chapter 1Introdu
tionThe ex
eption whi
h o

urred was not due to random failurebut a design error. The ex
eption was dete
ted, but inappropriatelyhandled be
ause the view had been taken that software should be
onsidered 
orre
t until it is shown to be at fault. The Board hasreason to believe that this view is also a

epted in other areas ofAriane 5 software design. The Board is in favor of the oppositeview, that software should be assumed to be faulty until applying the
urrently a

epted best pra
ti
e methods 
an demonstrate that it is
orre
t.-Prof. J. L. LIONS, Chairman, Inquiry Board, ARIANE-5.The above ex
erpt is dire
tly taken from the ARIANE-5, 
ight 501 
rashreport [11℄, whi
h exploded on June 4, 1996, less than 40 se
onds after it waslaun
hed. The 
ommittee investigated the a

ident found that it was 
ausedby a software error in the 
omputer that was responsible for 
al
ulating thero
ket's movement.It is 
lear that the need for reliable hardware and software systems is 
rit-i
al. As the involvement of su
h systems in our life is in
reasing, 
riti
ality ofensuring their 
orre
t operation is also in
reasing. Traditionally, testing andsimulation are used for establishing 
on�den
e in the design of software andhardware systems. These methods usually involve providing 
ertain inputs andobserving the 
orresponding outputs. Testing and simulation 
an be a 
ost eÆ-
ient way of minimizing errors. However, 
overing all possible intera
tions andpotential errors is rarely feasible. Hen
e there is an in
reasing interest in moreformal approa
hes.This thesis presents a te
hnique for veri�
ation using formal methods. Inthis 
hapter we introdu
e formal veri�
ation methods and provide basi
 ba
k-ground of the problem addressed. Finally, there is a note on the main 
ontri-bution of the thesis and the organization of subsequent 
hapters.7



8 CHAPTER 1. INTRODUCTION1.1 Formal MethodsFormal Veri�
ation methods aim at establishing that an implementation satis-�es a spe
i�
ation. Here the term implementation refers to an abstra
ted modelof the system to be veri�ed and spe
i�
ation refers to some property of the sys-tem expressed in suitable form. Formal veri�
ation methods 
an be dividedinto two basi
 
ategories of model-
he
king and theorem proving.1.1.1 Theorem ProvingTheorem Proving, also known as dedu
tive reasoning is an approa
h of formalveri�
ation where the veri�
ation problem is represented as a theorem in a for-mal theory. A formal theory 
onsists of language in whi
h formulas are written,a set of axioms and a set of inferen
e rule. These inferen
e rules are for thesynta
ti
 transformation of the formulas. With these rules and axioms, a the-orem 
an be proved.An advantage of Theorem Proving methods is that it 
an be applied toin�nite state systems. However, these approa
hes are often time-
onsumingand requires mathemati
ian's intervention (highly skilled human intervention).This la
k of automation makes its appli
ability more diÆ
ult and limited tosafety 
riti
al systems.1.1.2 Model Che
kingModel Che
king is a te
hnique for verifying �nite state 
on
urrent systems. Inthis te
hnique, properties are spe
i�ed as temporal logi
 formula and implemen-tation is represented using �nite state systems. A major bene�t of restri
tingthe model to �nite state systems is that veri�
ation 
an be performed automat-i
ally. Given suÆ
ient resour
es, it always terminates with a yes/no answer.The restri
tion to �nite state systems may seems to be too restri
tive, butin pra
ti
e an important 
lass of systems falls in this 
ategory. Hardware 
on-trollers are fortunately one of them and so is 
ommuni
ation proto
ols. We
an also verify the properties of other in�nite state systems using their abstra
t�nite model.Sin
e model 
he
king is highly automati
, it is preferable to dedu
tive ver-i�
ation, whenever it 
an be applied. However, a major limitation of model
he
king is the state explosion whi
h 
an happen if the system to be veri�edhas a large number of 
on
urrent 
omponents.This thesis will 
on
entrate on model 
he
king and present a di�erent ap-proa
h to it. In next se
tion, we brie
y dis
uss the history of model 
he
kingand the basi
 problem addressed in this thesis.



1.2. MOTIVATION FOR THE THESIS 91.2 Motivation for the thesis1.2.1 HistoryThe basi
 prin
iples of model 
he
king were developed in the early 1980's in-dependently by Quielle & Sifakis [20℄ and Clarke & Emerson [7, 6℄. The basi
idea is to model the system of interest so as to allow the generation of a graphthat 
ontains the rea
hable states of the system as nodes and the state tran-sitions between them as edges. When a labeling of the nodes with atomi
propositions whi
h hold at ea
h state is added, this graph is known as a Kripkestru
ture of the system. The spe
i�
ation of the property we are interested in isgiven by a temporal logi
 formula. One 
an 
he
k with a model 
he
king algo-rithm whether the system meets its spe
i�
ation, i.e., by 
he
king if the Kripkestru
ture of the system is a model of the spe
i�
ation. For small systems theapproa
h is quite pra
ti
al, but in systems with many 
on
urrent parts, globalstate transition graph be
omes too large to handle.In 1987, M
Millan proposed a new methodology for model 
he
king 
alledSymboli
 model 
he
king [4℄. In symboli
 model 
he
king the main idea is torepresent the behavior of the system in a symboli
 form rather than expli
-itly 
onstru
ting a Kripke stru
ture as a graph. There are several variationsto symboli
 methods. Their 
ommon feature is the use of representations ofsets of states of the system in impli
it form rather than having ea
h globalstate of a system expli
itly represented, e.g., as a node of the Kripke stru
-ture. M
Millan used Ordered Binary De
ision Diagrams (hen
eforth BDD) [3℄,a 
anoni
al form for Boolean expression, to represent the 
hara
teristi
 fun
-tions. Model Che
kers based on BDDs are usually able to handle billions ofstates. Although symboli
 representation using BDDs has greatly in
reasedthe size of the systems that 
an be veri�ed, many realisti
 systems are still toolarge to be handled. This is be
ause the performan
e of BDD based approa
hesdepends heavily on the variable ordering [see, Se
tion 2.2℄. Variable ordering isfrequently hard to generate automati
ally and generally human intervention isneeded.Re
ently, several suggestions have been made to repla
e BDDs with methodsbased on propositional satis�ability (SAT) pro
edures [2, 17, 18℄ to further im-prove the s
alability of symboli
 model 
he
king. SAT solver based algorithmsusually require mu
h less spa
e and usually work well in default settings. In ad-dition, a number of eÆ
ient implementations of SAT solvers are available, bothproprietary (PROVER) and in publi
 domain (GRASP, SATO, CHAFF et
),that 
an handle thousands of variables. These strengths of SAT solvers makethese approa
hes a promising alternative to BDD for symboli
 model 
he
king.In this thesis, we propose an algorithm for symboli
 model 
he
king as apossible solution to some of the problems with existing algorithms. In this thesiswe will 
on
entrate on SAT based implementation of the approa
h, but resultsshows that it 
an perform well irrespe
tive of underlying de
ision pro
edure



10 CHAPTER 1. INTRODUCTION(i.e., BDD or SAT). Before going into details, here we informally de�ne theproblem addressed by the thesis.1.2.2 Outline of the problemWe are interested in 
he
king safety properties of large �nite state ma
hinewith a large number of inputs. Safety properties are the 
lass of properties thatstate that \something bad does not happen". Given a �nite state ma
hine anda safety property, we wish to either validate that the ma
hine respe
ts the prop-erty, or �nd an exe
ution path that shows how the model violates the property.To perform safety 
he
king of �nite state ma
hines, the issues we fa
e in-
lude:� Satis�ability Che
king: Che
king whether a 
hara
teristi
 fun
tion1represents an empty set of states.This step 
an be termed as \satis�ability 
he
king". We need this oper-ation at two pla
es: (i) while de
iding whether an initial set of states isa subset of another set of states; and (ii) while 
he
king whether two setsof states are equivalent.Satis�ability 
he
king is the area of expertise of SAT-based symboli
model 
he
kers. A variety of eÆ
ient SAT-solvers are available whi
h
an �nd satisfying assignment faster be
ause of the depth-�rst nature ofSAT sear
h pro
edures. In 
hapter 2, we dis
uss various SAT sear
h pro-
edures in detail.� Quanti�
ation Elimination: Given a set of states, 
omputing the setof states that 
an be rea
hed using one transition via the transition rela-tion of the Kripke stru
ture.This step is termed as \image 
omputation". In traditional symboli
model 
he
king, image 
omputation requires existential quanti�
ation ofthe 
hara
teristi
 fun
tion (Boolean expression) over some Boolean vari-ables. Quanti�
ation elimination is an expensive operation in SAT basedte
hniques. Existing SAT-based approa
hes eliminate the quanti�
ationover state variables using \quanti�
ation-by-substitution" (see, equation 3.3)rule and then naively resolve the quanti�
ation (using equation 3.4) overinput variables by doubling the formula size. This makes these te
hniquesineÆ
ient when number of input variables are large.This thesis presents a symboli
 model 
he
king te
hnique whi
h addressesthe quanti�
ation problem by de
omposing the �nite state ma
hine.1We will use the term \
hara
teristi
 fun
tion" to denote the fun
tion that represents aset of states symboli
ally.



1.3. CONTRIBUTIONS 111.3 ContributionsThe main 
ontributions of this thesis are summarized below:1. A de
omposition based quanti�er elimination s
heme whi
h enhan
es thework given in [21℄ by guiding the de
omposition pro
ess in the hope ofsear
hing 
ounter-example faster.2. A ba
kward rea
hability based model 
he
king algorithm 
alled \Lazyde
omposition", whi
h 
omputes the 
omponent sub-graph only if thevalidity of safety property is not answerable using available 
omponents.1.4 Outline of the thesisThis thesis is organized as follows:In the next 
hapter we dis
uss the basi
s of BDDs and SAT solvers. Chapter3 brie
y reviews the work done in the �eld of symboli
 model 
he
king. In par-ti
ular, we dis
uss most popular algorithms based on BDDs and SAT, vis-a-visour algorithm.Chapter 4 des
ribes our approa
h for quanti�er removal. In that 
hapterwe �rst dis
uss the basi
 framework set by Chakraborty & Soni [21℄ for Kripkestru
ture de
omposition and then explain our heuristi
 to guide the pro
ess topossibly 
onverge towards 
ounter-example faster.In 
hapter 5, we propose an algorithm for safety property 
he
king over the
omponents of the Kripke stru
ture. We then explain this te
hnique, 
alled aslazy de
omposition, with the help of an example.In 
hapter 6, we demonstrate the promise of our approa
h by providing theresults of our experimental work. Experiments were 
arried out using BDD andSAT based implementations of the algorithm. We report the improvements byour te
hnique over traditional symboli
 model 
he
king algorithms.Finally In 
hapter 7, we draw some 
on
lusions and dis
uss possible futurework.
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Chapter 2BDDs and SATBoolean Algebra is the basi
 mathemati
al tool for symboli
 model 
he
king.This 
hapter introdu
es some basi
 de�nitions related to Boolean fun
tions.Satis�ability Che
king of Boolean fun
tions is one of the most 
ru
ial operationof symboli
 model 
he
king. Most of the symboli
 model 
he
king algorithmseither use Binary de
ision diagrams (BDDs) or satis�ability solvers (SAT) todetermine the satis�ability of the Boolean fun
tions. In this 
hapter, we de�neBDD and SAT formally and dis
uss underlying 
on
epts in detail.2.1 PreliminariesDe�nition 2.1 (Boolean Expression): The 
lassi
al 
al
ulus for dealingwith truth values 
onsists of Boolean variables x, y, : : :, the 
onstants true1 and false 0, the operators of 
onjun
tion ^, disjun
tion _, negation :, impli-
ation ),and bi-impli
ation ,, whi
h together form the Boolean expressions.Sometimes the variables are 
alled propositional variables or propositional let-ters and the Boolean expressions are then known as Propositional Logi
. Aliteral l is either a proposition (say, p) or the 
omplement of one (denoted by�p); in the �rst 
ase, we say that l is a positive literal, and in the se
ond, we saythat l is a negative literal.Formally, Boolean expressions are generated from the following grammar:t ::= x j 0 j 1 j :t j t ^ t j t _ t j t ) t j t , twhere x ranges over a set of Boolean variables. This is 
alled the abstra
t syntaxof Boolean expressions.De�nition 2.2 (
lause): A 
lause is a �nite disjun
tion of literals.A 
lause is 
alled as \unit 
lause" if it 
ontains only one literal.De�nition 2.3 (Conjun
tive Normal Form): A propositional formula isin Conjun
tive Normal Form (CNF) if it is a �nite 
onjun
tion of 
lauses.13



14 CHAPTER 2. BDDS AND SATExample 2.1 Formula (w _ y _ �z) ^ (�x _ �y) ^ (x _ �y _ �z) is in CNF, wherew; x; y and z are propositional variables and (w _ y _ �z); (�x_ �y) and (x_ �y _ �z)are the 
lauses of the formula.De�nition 2.4 (Truth Assignment): A truth assignment v is a partial fun
-tion from the set of propositions to fT, Fg, where T and F denotes logi
altruth and falsehood, respe
tively. We 
an extend the de�nition of v in a nat-ural way so that it assigns truth values to literals, 
lauses and formulas. Fora literal l, if l is a positive literal of p then v(l) = v(p) else v(l) = v(p)1. Fora 
lause C = _ni=1li; v(C) = _ni=1v(li). For a CNF formula F = ^nj=1Cj;v(F ) = ^nj=1v(Cj). Similarly this de�nition 
an be extended to any arbitraryformula.We say that a Truth assignment v satis�es a (formula/
lause/literal) �, if v(�)=T; and v falsi�es �, if v (�)=F.De�nition 2.5 (Satis�ability): A formula F is 
alled as satis�able if thereexists a truth assignment to its literals that satis�es F .A formula F is 
alled as unsatis�able if if there exists no truth assignment toits literals that satis�es F .A formula F is 
alled as valid (tautology) if all possible truth assignment to itsvariables satis�es F .Example 2.2 The formula dis
ussed in Example 2.1, is satis�able be
ause thetruth assignment f1 w; 0 x; 0 y; 1 zg satis�es it.De�nition 2.6 CNF Satis�ability problem : The CNF satis�ability prob-lem is simply this [12℄:Given a propositional formula F in CNF, is there any assignment to its literalsthat satis�es F .CNF satis�ability problem, 
ommonly known as SAT, is a famous NP-
ompleteproblem. It means that it is not proven to be intra
table but polynomial timealgorithm for solving it is also not known.Cofa
tor and quanti�
ation of Boolean formulas are important operationsfor symboli
 model 
he
king. They 
an be de�ned as follows:De�nition 2.7 (Cofa
tor and Quanti�
ation): The positive 
ofa
tor of aBoolean fun
tion F with respe
t to a variable a is the fun
tion that is obtainedby repla
ing every o

urren
e of a in F by 
onstant 1, and it is denoted by Fa.Similarly negative 
ofa
tor of F with respe
t to a is the fun
tion obtained byrepla
ing every o

urren
e of a in F by 
onstant 0, and it is denoted by F�a.1We use overline (F ) representation to show the negation of the formula (:F ).
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0 0 0 1 0 1 1 1Figure 2.1: Representing Boolean fun
tion using BDDsExistential quanti�
ation of a variable a from a fun
tion F is denoted by 9a �Fand 
an be de�ned as : 9a � F = Fa _ F�a (2.1)Similarly universal quanti�
ation 
an be de�ned as :8a � F = Fa ^ F�a (2.2)2.2 Binary De
ision DiagramsBinary De
ision Diagram (BDD) is a data stru
ture suitable for representingbinary fun
tion. Bryant [3℄ proposed this representation by imposing restri
-tion on the representation �rst introdu
ed by Lee [15℄ and Akers [1℄, su
h asthe resulting form is 
anoni
al. BDDs2 are substantially 
ompa
t than othertraditional representation like truth tables, 
onjun
tive normal form and dis-jun
tive normal form. In addition, they 
an be manipulated very eÆ
iently.Hen
e they have been widely used for symboli
 model 
he
king.In parti
ular, BDDs represents a Boolean fun
tion as a rooted, dire
teda
y
li
 graph. As an example, Figure 2.1 illustrates the representation of theBoolean fun
tion f(x1; x2; x3) = (x1x2+x2x3+x3x1), for the spe
ial 
ase whenthe graph is a tree. Ea
h non-terminal vertex v is labeled by a variable var (v)and has two 
hildren: else (v) (shown as a dashed line) 
orresponding to the
ase when variable is assigned to the value 0, and then (v) (shown as a solidline) 
orresponding to the 
ase where the variable is assigned the value 1. Ea
hterminal vertex is labeled 0 or 1. For a given assignment to the variables, thevalue yielded by the fun
tion is determined by tra
ing a path from the root to aterminal vertex, following the bran
hes indi
ated by the values assigned to the2We use the term BDD to refer the restri
ted Binary de
ision diagram, introdu
ed byBryant et al.
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Figure 2.2: Transformation Rules for OBDDsvariables. Then the value of the fun
tion is then given by the terminal vertex.2.2.1 Ordered Binary De
ision DiagramAn Ordered BDD (OBDD), has a total ordering < over the set of variables. Forany vertex u, and either nonterminal 
hild v of u, their respe
tive variables mustbe ordered as var (u) < var (v). In the de
ision tree of Figure 2.1, for example,the variables are ordered x1 < x2 < x3. We further need three transformationrules over these graphs that do not alter the fun
tion represented, but result inmore 
ompa
t and 
anoni
al representations of the fun
tions.1. Remove Dupli
ate Terminals: Choose a representative terminalvertex for the 
onstant 0 and one representative terminal vertex for the
onstant 1. All ar
s going into a terminal 0 vertex are dire
ted intothe representative terminal 0 vertex, and similarly all ar
s going into aterminal 1 vertex go to the representative terminal 1 vertex.2. Remove Dupli
ate Nonterminals: If nonterminal verti
es u and vhave var (u) = var (v), else (u) = else (v), and then (u) = then (v), theneliminate one of the two verti
es and redire
t all in
oming ar
s to theother vertex. This results in isomorphi
 subgraphs within the tree beingshared. It is this sharing property that enables BDDs to be a 
ompa
trepresentation for many Boolean fun
tions.3. Remove redundant Tests: If nonterminal vertex v has else (v) =then (v), then eliminate v and dire
t all in
oming ar
s to else (v).Starting with any BDD satisfying the ordering property, we 
an redu
e itssize by repeatedly applying the transformation rules. We use the term \Redu
edOrdered Binary De
ision Diagrams ( ROBDDs)" to refer to a maximal redu
ed



2.2. BINARY DECISION DIAGRAMS 17graph that obeys some ordering. Figure 2.2 illustrates the redu
tion of thede
ision diagram shown in Figure 2.1. Sin
e we always use this data stru
turein its ordered and redu
ed form, we will use the term BDDs to mean ROBDDs.2.2.2 PropertiesOperations and ComplexityBryant [3℄ gives algorithms for 
omputing the BDD representation of :f andf op g ( where op is a Boolean binary operator ), given the BDDs for f andg. These fun
tions have 
omplexity linear in the size of the argument BDDs.Another useful operation over BDDs is quanti�
ation over Boolean variables.Bryant also gave an algorithm to 
ompute the BDD for Restri
t operator, usingwhi
h existential and universal quanti�
ation 
an be 
omputed by equation 2.1and equation 2.2. Satis�ability 
he
king is an important operation in symboli
model 
he
king. Sin
e BDDs are 
anoni
al, using BDDs satis�ability 
he
king
an be done in 
onstant time.Pro
edure Result Time ComplexityRedu
e G redu
ed to 
anoni
al form O(jGj:logjGj)Apply f1 < op > f2 O(jG1j:jG2j)Restri
t f jxi=b O(jGj � logjGj)Compose f1jxi=f2 O(jG1j2:jG2j)Satisfy-one some element of Sf O(n)Satisfy-all Sf O(n:jSf j)Satisfy-
ount jSf j O(jGj)Table 2.1: Summary of Basi
 OperationsThe basi
 operation on Boolean fun
tions represented as fun
tion graphs aresummarized in Table 2.1. These few basi
 operations 
an be 
ombined to per-form a wide variety of operations on Boolean fun
tions. As the table shows,most of the algorithms have time 
omplexity proportional to the size of thegraphs (represented by jGj) being manipulated. Hen
e, as long as the fun
tionsof interest 
an be represented by reasonably small graphs, BDD manipulationalgorithms are quite eÆ
ient.Ordering Dependen
yThe form and size of the BDD representing a fun
tion depends heavily on theordering of the variable. In general, 
hoi
e of variable 
an make a di�eren
ebetween linear and exponential (in terms of number of variables). For example,Figure 2.3 shows two BDD representation of the same formula a1b1+a2b2+a3b3but with di�erent variable ordering. The 
hoi
e of variable ordering a1 < b1 <a2 < b2 < a3 < b3 yield a BDD of 8 verti
es, while the 
hoi
e of the variable
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Figure 2.3: E�e
ts of variable orderingorder a1 < a2 < a3 < b1 < b2 < b3 yields a BDD with 16 nodes.Most appli
ations using BDDs 
hoose some ordering at the beginning and
onstru
t graphs for all relevant fun
tions a

ording to this ordering. Thegeneration of variable ordering is often time 
onsuming or requires inputs fromthe designer. This limitation redu
es the degree of automation of BDD basedapproa
hes. Furthermore, there exists some fun
tions for whi
h every variableordering results in exponential number of nodes. Unfortunately, some fun
tionsof pra
ti
al interest like integer multipli
ation [3℄ falls into this 
ategory.2.3 Satis�ability SolvingSatis�ability 
he
king is one of the basi
 operations in symboli
 model 
he
king.In SAT-based model 
he
king, this step is performed using spe
ialized toolsfor 
he
king satis�ability, 
alled as SAT-solvers. In this se
tion we will dis
ussbasi
s of SAT-solvers in detail.As we know that 
he
king the satis�ability of a Boolean formula (SAT)is NP-
omplete. Boolean satis�ability is probably the most resear
hed 
om-binatorial optimization/sear
h problem. This resear
h has 
ulminated in thedevelopment of several SAT solving pa
kages that 
an rapidly solve many SATformulas of pra
ti
al interest.In this se
tion, we �rst review two of the most popular algorithms for SATsolving, 
alled as Davis and Putnam algorithm and Stalmar
k's algorithm.Sin
e these algorithms, and many other SAT-sear
h algorithms works withBoolean formulas in CNF (
lausal form), we need to 
onvert a general formulato CNF before giving it to a SAT solvers. We dis
uss two 
ommon approa
hesto 
onvert a general formula (non-
lausal form) into CNF.



2.3. SATISFIABILITY SOLVING 192.3.1 Popular Algorithms for SATDavis & Putnam AlgorithmThe �rst SAT algorithm is traditionally attributed to Davis and Putnam [8℄and referred to as Davis Putnam pro
edure (or DP in short). The original DPalgorithm is based on resolution. In resolution, a variable v is sele
ted and aresolvant (see the de�nition below) using v is added to the original formula. Thispro
ess is repeated to exhaustion or until an empty 
lause is generated. Theoriginal formula is not satis�able if and only if an empty 
lause is a resolvant.More formally, we 
an de�ne resolution using following de�nition:De�nition 2.8 (Resolution) Given two 
lauses C1 = (v _ x1 _ x2 _ : : :_ xm)and C1 = (�v _ y1 _ y2 _ : : :_ yn) , where all xi and yi are distin
t, the resolvantof C1 and C2 is the 
lause (x1 _ : : : _ xm _ y1 _ : : : _ yn) that is the disjun
tionof C1 and C2 without v or �v. The resolvant is the 
onsequen
e of logi
al ANDof the pair of 
lauses.Resolution is the pro
ess of repeatedly generating resolvant from the original
lauses and previously generated resolvants, until either the null 
lause is derivedor no more resolvants 
an be 
reated. In former 
ase, the formula is unsatis�ableand in the latter 
ase, it is satis�able.A later version of DP, due to Davis, Logeman and Loveland [16℄, usuallyknown as DPL, uses splitting rule whi
h repla
es the original problem intotwo smaller subproblems, whereas DP uses resolution whi
h repla
es originalproblem with one (usually larger problem).De�nition 2.9 (Splitting) In splitting, a variable v is sele
ted from a for-mula, and the formula is repla
ed by one sub-formula for ea
h of two possibletruth assignments to v. Ea
h subformula has all the 
lauses of the original ex-
ept those satis�ed by the assignment to v and otherwise all the literals of theoriginal formula ex
ept those falsi�ed by the assignment. Neither sub-formula
ontains v, and the original formula has a satisfying truth assignment if andonly if either sub-formula has one. Splitting insures that a sear
h for a solutionterminates with a result.DPL is implemented more often than DP be
ause variable elimination (us-ing resolution) has four disadvantages: (1). It is more diÆ
ult to implementthan splitting rule; (2) it tends to repeatedly in
rease the length and numberof 
lauses; (3) it tends to generate a lot of dupli
ate 
lauses and (4) it veryrarely generates unit 
lauses. Furthermore, DPL's splitting rule also makes iteasier to 
onstru
t a 
erti�
ate of satis�ability3, whereas DP makes it easier to
onstru
t a 
erti�
ate of unsatis�ability.There are many variants of Davis-Putnam pro
edure, ea
h variant di�eringfor the set of rules implemented for performan
e optimization. Two su
h rulesare unit 
lause rule and empty 
lause rule.3This 
an be used for 
ounterexample generation in symboli
 model 
he
king.



20 CHAPTER 2. BDDS AND SATDe�nition 2.10 (Unit Clause Rule): If the formula 
ontains some 
lausewith only one literal, then sele
t that variable and assign it a value that satis�esthe 
lause 
ontaining it; otherwise sele
t any other variable for splitting.De�nition 2.11 (Empty Clause rule): If the formula 
ontains some empty
lause (a 
lause whi
h always has value false) then exit and report that theformula is unsatis�able; otherwise sele
t any other variable for splitting.Algorithm 2.3.1: DP(�; �)= � S
hemaforDavisandPutnamAlgorithm � =8>>>>>>>>>>>><>>>>>>>>>>>>:
if � = Tthen return �; = �Base � =if � = Fthen return False; = � Ba
ktra
k � =if a unit 
lause(l) o

urs in � = � UnitClause � =then return DP(assign(l; �); � [ l);l 
hoose-literal(�; �); = � Split � =return DP(assign(l; �); � [ l); orDP(assign(:l; �); � [ :l);The basi
 algorithm for DPL is given in Algorithm 2.3.1. To sear
h thesatis�ability of CNF formula �, the pro
edure has to be invoked by the 
all DP(�; fg), where fg is the empty assignment. DP (�; fg) returns as assignment� if � is satis�able, and False otherwise. If N is the number of propositionalvariables in the formula, DP sear
hes in a spa
e of 2N assignments. Noti
e thatthe number of the propositional variable is thus more 
riti
al than the size j�jof the formula in determining the run-time of the basi
 DP pro
edure. There isa wide variety of tools that implement some 
avor of DP algorithm. ZCHAFF,SATO, SIM and GRASP are few of them.Stalmar
k's pro
edureStalmar
k's Saturation method [22℄ is a patented algorithm that 
an be usedfor satis�ability 
he
king. The method has been su

essfully applied in an widerange of industrial appli
ations. The algorithm takes the set of the formulasfx1; x2; : : : ; xng as input, and produ
es an equivalen
e relation over the negatedand unnegated subformulas of all xi. Two subformulas are equivalent a

ord-ing to the resulting relation only when this is a logi
al 
onsequen
e of assumingthat all formulas xi are true. The algorithm 
omputes the relation by 
arefullypropagating information a

ording to the stru
ture of the formulas.The saturation algorithm is parameterized by a natural number k, the satu-ration level, whi
h 
ontrols the 
omplexity of the propagation pro
edure. Theworst 
ase time 
omplexity of the algorithm is O (n2k+1) in the size n of the



2.3. SATISFIABILITY SOLVING 21formulas, so that for a given k, the algorithm runs in polynomial time andspa
e. A fortunate property is that this k is surprisingly low (usually 1 or 2)for many pra
ti
al appli
ations, even for extremely large formulas.The advantage of having 
ontrol over the saturation level is that the user 
anmake a trade-o� between the running time and the amount of information thatis found. A disadvantage is that it is not always 
lear what k to 
hoose inorder to �nd enough information. In 
ontrast, �nding equivalen
es using BDDsresults in dis
overing either all information, or no information at all due to ex-
essive time and spa
e usage. The SAT-solvers based on stalmar
k's pro
edureis PROVER.2.3.2 Dealing with non-CNF formulasTraditionally, the satis�ability problem for propositional logi
 deals with formu-las in CNF (also known as 
lausal form). A typi
al way to deal with non-CNFformulas requires (1) 
onverting them into CNF, and (2)applying SAT solversbased on above dis
ussed approa
hes. A formula 
an be 
onverted to CNFusing following methods:1. Classi
al Method: Conversion of a formula � into CNF 
an be doneusing this method as follows: �rst, � is 
onverted into negation normalform and then the rule( î _j �ij) _ ( k̂ _m �km) =) î;k(_j �ij __m �km)is re
ursively applied to distribute ^'s over _'s. As result of this 
on-version, we get a formula  whi
h is logi
ally equivalent to �. However,this transformation may lead to a 
onsiderable in
rease in the size of theformula (in the worst 
ase, j j is O(2j�j)), whi
h makes the method of nopra
ti
al utility in many 
ases.2. Using Auxillary Variables: A more 
onvenient way to 
onvert � intoCNF is based on the idea of renaming the sub-formulas of �. In thismethod, a newly introdu
ed variable a�i is asso
iated to ea
h non-literalsubformula �i of �. Then ea
h a�i substitutes every o

urren
e of �i in-side �, and the expression (a�i , �i) is added to the result.In order to identify all subformulas of the expression �, it is �rst repre-sented as a dire
ted a
y
li
 graph (DAG) and then ea
h nonterminal nodeof the DAG will represent a subformula �i of �.Example 2.3 To identify all subformulas of the Boolean fun
tion � =((x1 � x2 + (x2 + x3)), (x3 � (x3 + x4))), it 
an be represented in a DAGas Figure 2.4. Auxillary variables a1; a2; a3; a4; a5 and a6 are introdu
ed
orresponding to ea
h nonterminal (subformula of �). Using above de�ned
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Figure 2.4: Representation of a Boolean formula as a DAGapproa
h, the CNF formula 
orresponding to � would be:a1 ^ (a1 , (a2 , a3))^ (a2 , (a4 + a5))^ (a4 , (x1 � x2))^ (a5 , (x2 + x3))^ (a3 , (x3 � a6))^ (a6 , (x3 + x4))The subformulas that are not in CNF form, 
an be 
onverted to CNFusing the de�nition of , operator and the 
lassi
al method dis
ussedearlier. Here sin
e the number of variables in ea
h subformula is at mostthree, this 
onversion is pra
ti
al.Davis Putnam Algorithm for non-CNF formulasAn interesting improvement of D&P method is given by Giun
higlia et al. [13℄,when applied to non-CNF formulas. Suppose we want to 
he
k the satis�a-bility of a non-CNF formula �. Before applying DP, we must 
onvert � to
orresponding CNF formula  in the original variable and in a set of K newlyadded variables. Therefore, standard DP will sear
h in a spa
e of 2N+K assign-ment, for it may ba
ktra
k on newly added auxillary variables. In the approa
htaken by [13℄, splitting is not performed on newly added variables, eliminatingthus 2K fa
tor. The underlying idea of these variants is that splitting should o
-
ur only for the variables in original non-CNF formula. [13℄ gives two methodsbased on the above prin
iple known as DP� and DP�� algorithms. This methodis implemented in a variety of SAT-solvers in
luding SIM and ZCHAFF.



Chapter 3Related WorkThe main idea behind symboli
 model 
he
king is to represent sets of statesand transition relations as 
hara
teristi
 formulae (Boolean expression). Afterthe introdu
tion of Symboli
 model 
he
king te
hnique by M
Millan, a lot ofrepresentations have been suggested for storing and manipulating Boolean ex-pressions. As dis
ussed in 
hapter 2, BDDs and SAT are forerunners amongthem. In this 
hapter, we will dis
uss the key points of various BDD and SATbased algorithms.De�nitionsDe�nition 3.1 (Kripke Stru
ture) A Kripke stru
ture M is a �ve tupleM = fS; S0; N; L;APg where1. S is a �nite set of states.2. S0 � S is the set of initial states.3. N � S � S is a transition relation that must be total, that is for everystate s 2 S there is a state s0 2 S su
h that N(s; s0).4. AP denotes the set of atomi
 propositions.5. L : S ! 2AP is a fun
tion that labels ea
h state with the set of atomi
propositions true in that state.Kripke stru
ture is one of the popular mathemati
al representation of �nitestate ma
hines. In the remaining text we use Kripke stru
ture to represent a�nite state ma
hine.3.1 BDD-based symboli
 model 
he
kingSymboli
 model 
he
king has be
ome identi�ed with BDDs, a 
anoni
al formfor Boolean formula representation that has proved to be quite eÆ
ient forthis purpose in pra
ti
e. As we dis
ussed in the previous 
hapter, eÆ
ient23



24 CHAPTER 3. RELATED WORKalgorithms for manipulation of BDDs exist. Sin
e BDDs are 
anoni
al repre-sentation, substantial subexpression sharing o

urs and that results in 
ompa
trepresentation of Boolean expressions. In addition, 
anoni
ity implies that sat-is�ability and validity 
an be 
he
ked in 
onstant time.Many of the ideas in BDD based model 
he
king 
an be explained 
onsider-ing the problem of 
omputing rea
hable states. In the following subse
tion,we will dis
uss basi
 algorithms for symboli
 rea
hability in 
ontext of \safetyproperties".3.1.1 Symboli
 Rea
hability AlgorithmsGiven the BDD for the initial state Init(x) and transition relation N(x;x0), onestep su

essors (also termed as Image) and one step prede
essor(also termedas pre-image) of any set of states 
an be 
omputed using BDD based symboli
algorithms. This 
an be done repeatedly to explore all the rea
hable states.If the safety property to be 
he
ked is Prop(x), we 
hara
terize set of badstates Bad(x) as :Prop(x). There are two standard algorithms for performingrea
hability analysis:Forward Rea
habilityIn forward rea
hability we 
ompute a sequen
e of formulas Fi(x) that 
hara
-terize the set of states that initial states 
an rea
h in at most i steps:F0(x) = InitFi+1(x0) = Fi(x0) _ 9x[Fi(x) ^N(x;x0)℄ (3.1)We terminate the sequen
e generation if one of the following 
ondition o

urs:1. Fn(x)^Bad(x) is satis�able; it means that a bad state is rea
hable. Hen
ewe 
an 
on
lude that safety property is violated.2. Fi(x) = Fi+1(x); It means that no new state is rea
hable using the tran-sitions in transition relation. This situation is termed as �xed point. Ifwe rea
h a �xed point without en
ountering a bad state, we 
an 
on
ludethat the system is safe with respe
t to the property under 
onsideration.Ba
kward Rea
habilityIn ba
kward rea
hability, we 
ompute a sequen
e of formulas Bi(x) that 
har-a
terize a set of states that 
an rea
h a bad states within i steps:B0(x) = BadBi+1(x) = Bi(x) _ 9x0 [Bi(x0) ^N(x;x0)℄ (3.2)In a similar manner to forward rea
hability, we 
an stop the sequen
e generationif: 1. Bn(x) ^ Init(x) is satis�able; or
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Backward ReachabilityFigure 3.1: Forward and Ba
kward rea
hability analysis2. Bi(x) = Bi+1(x) holds.The intuition behind forward rea
hability and ba
kward rea
hability is shownin the Figure 3.1. These two rea
hability methods 
an be 
ombined to performrea
hability analysis by interleaving the steps of forward and ba
kward rea
ha-bility. The sequen
e generation 
an be terminated if we rea
h a �xpoint in anyof the dire
tions or Fn and Bn interse
ts.3.1.2 Limitations of BDD based approa
hesBDDs have proved to be a viable representation for doing symboli
 rea
habilityon large �nite state ma
hines. However, for many large systems, most sophis-ti
ated BDD based algorithms 
an not produ
e results. This is be
ause thesize of intermediate BDD, while 
omputing the rea
hable state spa
e, blows upbeyond the memory 
apabilities of most ma
hines. This is 
ommonly known asBDD blowup problem.As dis
ussed in the previous 
hapter, the size of the BDD depends heavilyon the variable ordering. The generation of a variable ordering that results insmall BDDs is often time 
onsuming or needs human intervention. Moreover,there exists some fun
tions that 
an not be represented eÆ
iently regardlessof the input ordering. Unfortunately, some important fun
tions like integermultipli
ation [3℄ falls within this 
ategory.3.2 SAT-based symboli
 model 
he
kingPropositional de
ision pro
edures(SAT) also operate on Boolean expressionsbut do not use 
anoni
al forms. They also do not su�er from potential spa
eblowup of BDDs and 
an handle propositional satis�ability problem with thou-sands of variables. These strengths of SAT pro
edures makes SAT-based model
he
king quite promising.



26 CHAPTER 3. RELATED WORKIn this se
tion, we review the work done in the �eld of SAT based model 
he
k-ing and will 
ompare our solution with ea
h of them.3.2.1 Bounded Model Che
kingBounded model 
he
king [2℄ pro
edure, proposed by Clarke et al., sear
hes for
ounterexamples by \unrolling" the transition relation k steps, for in
reasingvalues of k. At ea
h step k, the unrolling 
hara
terizes the set of paths of lengthk through the transition relation, and is des
ribed as a formula (without quanti-�ers). If no 
ounterexample is found, the sear
h is terminated when the value ofk is equal to the diameter of the system. However, the value of the diameter isusually hard to 
ompute, making BMC in
omplete in pra
ti
e. In other words,unless bound on the length of the 
ounterexamples is not given, BMC 
an nota
tually verify the the given property, it 
an only produ
e 
ounterexamples.The te
hnique presented in this thesis is not \bounded" and hen
e 
an provethe 
orre
tness if the property is true.3.2.2 Standard Rea
hability based Approa
hesAbdulla et al. [19℄ have shown how to adapt standard algorithms for sym-boli
 rea
hability analysis to work with SAT-solvers. They introdu
ed Redu
edBoolean Cir
uits (RBC) [10℄, a non 
anoni
al representation for Boolean for-mulas. The advantage of using a non 
anoni
al representation is that they aremore su

in
t than 
anoni
al ones. On the other hand, satis�ability 
he
kingwith non-
anoni
al data stru
tures is hard. They used SAT solvers to deter-mine the satis�ability of RBC representation of the Boolean formula. The onlyoperation of rea
hability analysis that does not straightforwardly 
arry overusing RBCs is quanti�
ation over propositional variables.For quanti�er elimination they 
ontributed some really e�e
tive heuris-ti
s to simplify Quanti�ed Boolean formula. In parti
ular quanti�
ation-by-substitution rule (or in-lining rule)9x:(x$  ) ^ �(x)() �( ) (3.3)turned out to be very useful. We will also use this heuristi
 to remove the needof quanti�
ation over state variables. For quanti�
ation over input variables,they naively resolve it, using equation 3.4, yielding an exponential blowup inrepresentation size. 9x:�(x)() �(0) _ �(1) (3.4)This makes their approa
h impra
ti
al, if the number of input variables arelarge. Our algorithm removes the requirement of quanti�
ation over input vari-ables, making model 
he
king of FSMs with large input variables pra
ti
al.Clarke et al. [24℄ adopted a similar approa
h for standard rea
hability anal-ysis using SAT solvers. They introdu
ed another non 
anoni
al data stru
ture



3.2. SAT-BASED SYMBOLIC MODEL CHECKING 27Boolean Expression Diagrams (BED) [24℄ to represent the Boolean formula. Intheir approa
h, they use similar approa
hes for quanti�
ation removal. Theyhave reported improvements over Abdulla et al.'s approa
h. But again, theirmethod is also sus
eptible to possible blowup in representation size if numberof inputs is large.3.2.3 Indu
tion based Approa
hesThis approa
h was initially suggested by Sheeran et al. [17℄ for verifying safetyproperties over �nite state systems. It is based on unfolding the transition rela-tion to the length of longest \shortest path" between two states. The fa
t thatthis length has been rea
hed 
an be 
he
ked using a SAT solver. Thus, unlikeBMC, this method 
an verify the 
orre
tness of a property.The performan
e of SAT-solvers depends heavily on the size of the Booleanformula. The above s
heme of \unfolding " the transition relation in
reases thesize of the Boolean expression at ea
h step. The approa
h taken by us does notinvolve unfolding the transition relation and hen
e 
an possibly produ
e smallBoolean expressions.3.2.4 SAT based Quanti�er EliminationIn [18℄, M
Millan used Satis�ability solving for quanti�
ation removal. In par-ti
ular, he showed that with a slight modi�
ations, modern SAT algorithms 
anbe used to eliminate universal quanti�ers from an arbitrary quanti�ed Booleanformula, produ
ing a result in CNF. This method requires modi�
ation in thesatis�ability solvers whereas our method 
an work with existing SAT solvers.3.2.5 Quanti�er Elimination using de
ompositionThe work most 
losely related to ours is by Chakraborty & Soni [21℄. Theyinitially suggested the method of model 
he
king using de
omposition (de�nedformally in Chapter 4) of the Kripke stru
ture. In their approa
h for de
ompo-sition, number of 
omponents 
an be large even if there exists a short 
ounterex-ample. In this thesis we have used their approa
h for quanti�er elimination andenhan
ed it by guiding the de
omposition pro
ess su
h that the 
ounterexampleof length k 
an be dete
ted using at most k 
omponents. We 
all this te
hnique\
ounter-example fo
used" de
omposition.
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Chapter 4Quanti�er EliminationFrom the dis
ussion in previous 
hapters, it is 
lear that existential quanti�
a-tion plays a 
entral role in symboli
 ba
kward (as well as forward) rea
habilityanalysis. The standard symboli
 rea
hability algorithm [9℄ applies this op-eration repeatedly during a breadth-�rst traversal of the state spa
e, until a�xed point is rea
hed. If the diameter of the ba
kward rea
hable part of theKripke stru
ture is large, ba
kward rea
hability analysis entails a large numberof appli
ations of existential quanti�
ation, even with iterative squaring. Un-fortunately, existential quanti�
ation is an expensive operation to implementin BDDs. In fa
t, BDD pa
kages typi
ally provide an optimized AndAbstra
toperator to aid this step of rea
hability analysis. While this works better thanperforming 
onjun
tion and quanti�
ation separately, it still leads to blowup ofintermediate BDD sizes in most 
ases.In this 
hapter, we address this bottlene
k by presenting a te
hnique thatdoes not require quanti�
ation for symboli
 rea
hability analysis. In this te
h-nique, the need of quanti�
ation over input variables is removed by de
om-posing the Kripke stru
ture of the system into a set of Kripke stru
tures (known as 
omponents). This te
hnique was initially proposed by Chakrabortyand Soni [21℄. Their approa
h has the disadvantage that even if a short 
oun-terexample exists, de
omposition may results in a large number of 
omponents.We further enhan
e this te
hnique by guiding the de
omposition pro
ess su
hthat if the length of the shortest 
ounterexample is k, 
ounterexample 
an bedete
ted using at most k 
omponents. In the remainder of this 
hapter, wepresent our ideas in the 
ontext of ba
kward rea
hability analysis. Extensionsto forward rea
hability analysis are dis
ussed in Se
tion 5.4.4.1 MotivationFor deterministi
 systems, Filkorn [23℄ proposed an alternative approa
h to tra-ditional ba
kward Image 
omputation. Filkorn showed that pre-image of a set
an be obtained by substituting the state variables with their 
orrespondingnext state fun
tions. This approa
h removes the need of quanti�
ation overstate variables. Similar ideas for quanti�er simpli�
ation have been used by29



30 CHAPTER 4. QUANTIFIER ELIMINATIONAbdulla et al. [19℄ and Williams et al. [24℄ in the 
ontext of symboli
 rea
ha-bility analysis using SAT based te
hniques.Consider the problem of ba
kward image 
omputation as dis
ussed in Chap-ter 3. The most expensive step of ba
kward image 
omputation is 
omputingthe relational produ
t 9x0 [Bi(x0)^N(x;x0)℄ (equation 3.2), where Bi(x0) is the
urrent set of states and N(x;x0) is the next state transition relation. For de-terministi
 �nite state ma
hines (like hardware sequential 
ir
uits), transitionrelation 
an also be written in the form of transition fun
tions, where ea
h ofthe x0 
an be written as x0k = fk(x; i).Example 4.1 Consider the �nite state ma
hine shown in Figure 4.2.3. Letthe set of state variables is x = fx1; x2g and 
orresponding next state versionis x0 = fx01; x02g. i1 and i2 are the input variables. Next state fun
tion of this�nite state ma
hine will be: x01 = x1 + i1:x2x02 = x1The pre-image of a set Bi(x0) 
an now be 
omputed as 9x0;i[Bi(x0)^(x0 = f(x; i))℄,whi
h using Filkorn's approa
h 
an be rewritten as 9i[Bi(f(x; i))℄. Now the re-sulting quanti�ed Boolean formula is free from the quanti�
ation over statevariables and we are left with the problem of quantifying the input variables.Thus, if there are fewer primary input variables than next state variables, it isadvantageous to use this simpli�
ation.4.1.1 Quantifying Input variablesWhile Filkorn's method allows us to quantify primary input variables insteadof next state variables, it does not eliminate the need for quanti�
ation. If,however, the next state depends only on the present state, then we 
an expressN(x;x0) as Vkj=1(x0j , gj(x)). The pre-image of a set B(x0) of states 
anthen be obtained simply as B(g(x)), where g(x) denotes the ve
tor of nextstate fun
tions gj . We will hen
eforth say that a Kripke stru
ture has theunique su

essor property if the next state is uniquely determined by the presentstate. It follows that ba
kward rea
hability analysis of unique-su

essor Kripkestru
tures does not require existential quanti�
ation. This leads to the followingobservation: Given an arbitrary Kripke stru
ture, if we \de
ompose" it into aset of unique-su

essor Kripke stru
tures, ba
kward rea
hability analysis 
an beperformed without existential quanti�
ation.This is the key intuition behind our work. On
e the set of unique-su

essorKripke stru
tures are obtained, te
hniques analogous to MBM or FBF [14℄
an be applied to obtain the ba
kward rea
hable states from a target set ofstates, without using existential quanti�
ation. Our problem therefore redu
esto \de
omposing" a Kripke stru
ture into a set of unique-su

essor stru
tures.



4.1. MOTIVATION 31Basi
 De�nitionsDe�nition 4.1 (Component): A Component of a Kripke stru
ture M =fS; S0; N; L;APg is another Kripke stru
ture C = fS
; S
0; N 
; L
; AP 
g su
hthat:1. S
 = S.2. S
0 = S0.3. N 
 � N and N 
 satis�es unique su

essor property, that is for s; s1; s2 2S; (s; s1) 2 N 
 and (s; s2) 2 N 
 implies s1 = s2.4. L
 = L.5. AP 
 = AP .De�nition 4.2 (Notion of 
overing): A 
omponent C 
overs a transition(s1; s2) of a Kripke stru
ture M , if (s1; s2) 2 N 
.De�nition 4.3 (De
omposition): A de
omposition D of a Kripke stru
tureM 
an be de�ned as a set of 
omponents of M . A de
omposition is 
omplete ifevery transition of M is 
overed by at least one 
omponent in D. Otherwise, Dis a partial de
omposition. A 
omplete de
omposition may be viewed as a 
ol-le
tion of transition fun
tions, the union of whi
h gives the original transitionrelation of M .Sin
e in ea
h 
omponent every state has exa
tly one outgoing edge, transi-tion fun
tion of the 
omponents will be of the form x0 = f(x), ba
kward rea
h-ability 
omputation over the 
omponent 
an be done without quanti�
ation.Sin
e all the transitions of a Kripke stru
ture M are 
overed in a 
omplete de-
omposition, rea
hable states of the M are equal to the union of the rea
hablestates of all the 
omponents of the 
omplete de
omposition. Hen
e if we 
an�nd a de
omposition of a �nite state ma
hine, ba
kward rea
hability analysis
an be done without existential quanti�
ation.Hen
e, the problem of existential quanti�
ation of inputs redu
es to �nd-ing a de
omposition of the �nite state ma
hine.4.1.2 Minimality CriteriaFor a parti
ular �nite state ma
hine M , several 
omplete de
ompositions arepossible. A naive approa
h to obtain a 
omplete de
omposition of M is tosubstitute all possible values for the input variables in next state fun
tionsof M one-by-one to generate all 
omponents. For example in Figure 4.2.3,
omponent(
1) 
an be obtained by substituting (00) for inputs (i1i2), N
1 =f(x01 = x1); (x02 = x1)g. But the number of 
omponents generated using this
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Figure 4.1: Our Approa
happroa
h would be 2m, where m is the number of input variables.If a state in the transition graph goes to di�erent states for all possibleinput values, that is its out-degree is (2m), a minimum of 2m 
omponents areneeded to generate a 
omplete de
omposition. But fortunately in most pra
ti
al
ir
uits, there are lot of overlap of edges in the transition relation. If we exploitthis feature we 
an expe
t the number of 
omponents to be signi�
antly lessthan 2m. We observed that any minimal de
omposition of a Kripke stru
tureshould satisfy following properties:De�nition 4.4 (Minimal De
omposition): A de
omposition is minimal if:1. It is 
omplete.2. There does not exist any other 
omplete de
omposition with fewer 
ompo-nents.Note that an minimal de
omposition may not be unique.A minimal de
omposition 
an be generated by following the two guidelinesmentioned below:1. Ea
h of the 
omponents should have the maximum un
overed edges, thatis repetition of edges should o

ur only when all the outgoing edges havebeen 
overed.2. If a parti
ular transition is 
overed for an input, the other input valueswhi
h give the same transition, should also be 
onsidered as 
overed. We
all su
h transitions impli
itly 
overed. For example in Figure 4.2.3, thetransition from state (01) to (00) o

urs for input (01) and (00) so if we
over the transition on input (00) , transition from state (01) to (00) oninput (01) will get 
overed impli
itly.
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tion, we des
ribe a te
hnique for obtaining a minimal de
ompo-sition of a Kripke stru
ture arising out of a deterministi
 �nite state ma
hine.We will see later that our method generalizes to arbitrary Kripke stru
tures aswell.NotationsIn the following dis
ussion, we will adhere to following notations until spe
i�edotherwise:� Bold fa
e alphabets are used to represent ve
tors.� alphabet x will represent a ve
tor of next state variables fx1; x2; x3; : : : ; xngand i will represent a ve
tor of input variables fi1; i2; i3; : : : ; img.� Similarly, f(x; i) will represent a ve
tor of fun
tions having support set xand i.� F will represent the negation of the fun
tion F , that is, F = :F .4.2 Basi
 Te
hnique for Symboli
 Minimal De
om-positionAs we dis
ussed above, the next state of a deterministi
 �nite state ma
hine
an be expressed as a fun
tion of the present state and primary inputs. Usingnotation introdu
ed earlier, let f(x; i) represent the ve
tor of next state fun
-tions. Thus, x0j , fj(x; i) for all j in 1 through k, where k denotes the numberof state variables. In order to obtain a 
omponent of a de
omposition, however,we must remove the fun
tional dependen
y of x0j on the primary inputs i. Inother words, we must express x0j as hj(x) for some suitable fun
tion hj . Weobserve that this 
an be a
hieved if we express ea
h primary input variable ilas a fun
tion, gl(x), of the present state. Viewed in another way, this amountsto spe
ifying a primary input 
ombination for ea
h state to help 
hoose an out-going transition from that state in the deterministi
 �nite state ma
hine. LetG(x) denote the ve
tor of fun
tions gl(x), where l ranges from 1 to m (num-ber of primary inputs). We 
an then express ea
h x0j as fj(x;G(x)), therebyobtaining a 
omponent.To formalize the above intuition, we de�ne a few additional terms.De�nition 4.5 (Un
overed Edge fun
tion): Let M be a Kripke stru
turearising out of a deterministi
 �nite state ma
hine, and let D be a de
omposition(possibly partial) of M . We de�ne a Boolean fun
tion ED(x; i), 
alled theUn
overed Edge fun
tion for D, su
h that:ED(x; i) = 1 i� the transition (x; f(x; i)) is not 
overed by any 
omponent inD.ED(x; i) = 0 otherwise.Thus, E�(x; i) � 1, and ED(x; i) � 0 for a 
omplete de
omposition D.
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overed Edge fun
tion ED(x; i), we have to determine the value ofthe input ve
tor of fun
tions G(x) , whi
h if substituted for the input variablesin transition relation of M will results in a minimal 
omponent of M . We 
allthis ve
tor Un
overed Input Fun
tion Ve
tor.De�nition 4.6 (Un
overed Input Fun
tion Ve
tor ): Let m denote thenumber of primary inputs of a deterministi
 �nite state ma
hine. Given a (pos-sibly partial) de
omposition D of M , we de�ne a ve
tor of fun
tions GD(x)=hgD1 (x); : : : ; gDm(x)i, su
h that� If one or more outgoing transitions from state x are un
overed by the
omponents in D, then (x; f(x; i)) is an un
overed transition.� If all outgoing transitions from state x are 
overed by 
omponents in D,then (x; f(x; i)) is a 
overed transition.Note that there 
ould be multiple ve
tors GD(x) satisfying the above 
ondition,for a given �nite state ma
hine and de
omposition D.Intuitively, GD(x) gives a 
ombination of primary input values that takes statex to state x0 in the �nite state ma
hine, where (x;x0) is not 
overed by any 
om-ponent in de
omposition D. Every ve
tor GD(x) satisfying the above 
onditionsis 
alled an un
overed input fun
tion ve
tor for de
omposition D.De�nition 4.7 (Impli
itly Covered Edge Fun
tion ): Given an un
ov-ered input fun
tion ve
tor G(x), the impli
itly 
overed edge fun
tion isa Boolean predi
ate, SG(x; i), that evaluates to 1 i� f(x; i) , f(x;G(x)). Inother words, SG(x; i) indi
ates whether appli
ation of primary input i in statex of the �nite state ma
hine takes us to the same state as the appli
ation ofprimary input G(x).4.2.1 Computing Un
overed Input Fun
tion Ve
torProblem Statement Given an Un
overed Edge fun
tion ED(x; i), �ndG(x) = f(i1 = g1(x)); (i2 = g2(x)); :::; (im = gm(x))g whi
h takes astate x as input and gives value of input i1; ::; im 
orresponding to anun
overed transition from x.For the sake of simpli
ity, assume that there is only one input variable.Now, given un
overed edge fun
tion ED(x; i), we have to 
ompute un
overedinput fun
tion ve
tor G(x) = f(i = g(x))g to generate a 
omponent for theminimal de
omposition. As 
lear from the Figure 4.2, for a given un
overededge fun
tion ED(x; i), for ea
h state x following four 
ases are possible:1. From the state x the edge labeled with input i = 1 is un
overed andi = 0 is 
overed (Figure 4.2.a). Hen
e to produ
e a 
omponent, we should
hoose the transition 
orresponding to i = 1. So in this 
ase g(x) = 1.Let us 
hara
terize this 
ase by f1(x).
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Figure 4.2: Un
overed Edge fun
tion: all possible 
ases2. From the state x both the edges, that is, with i = 0 and i = 1 areun
overed (Figure 4.2.b). Hen
e we 
an 
hoose any edge without violatingthe minimality property. In this 
ase, g(x) may be any fun
tion of x. Letthis fun
tion be u(x). Let us 
hara
terize this 
ase by f2(x).3. From the state x both the edges, that is, with i = 0 and i = 1 are
overed (Figure 4.2.
). Hen
e we 
an 
hoose any edge without violatingthe minimality property. In this 
ase also, g(x) may be any fun
tion ofx. Let this fun
tion be v(x). Let us 
hara
terize this 
ase by f3(x).4. From the state x the edge labeled with input i = 0 is un
overed andi = 1 is 
overed (Figure 4.2.d). Hen
e to produ
e a 
omponent we should
hoose edge 
orresponding to i = 0. So in this 
ase g(x) = 0. Let us
hara
terize this 
ase by f4(x)Based on the above observations, we 
an derive the value of un
overed inputfun
tion g(x) asg(x) = f1(x):1 + f2(x):u(x) + f3(x):v(x) + f4(x):0= f1(x) + f2(x):u(x) + f3(x):v(x) (4.1)Given un
overed edge fun
tion ED(x; i), f1; f2 and f3 
an be 
omputed as:f1(x) = ED(x;1) ^ED(x;0) (4.2)f2(x) = ED(x;1) ^ED(x;0) (4.3)f3(x) = ED(x;1) ^ED(x;0) (4.4)Hen
e given the un
overed edge fun
tion ED(x; i), un
overed input fun
tiong(x) 
an be 
omputed using equations 4.1, 4.2, 4.3 and 4.4.GeneralizationThe above pro
edure for 
omputing G(x) for one input variable 
an be gener-alized for any number of inputs in following manner. We 
onsider ea
h inputone-by-one and 
onsider other inputs as state variables and use the formula 4.1
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ompute the value of un
overed input fun
tion for that input. For example,suppose our un
overed edge fun
tion is ED(x; i1; :::im�1| {z }; im). We 
an 
omputeun
overed input fun
tion 
orresponding to input im as im = gm(x; i1; :::; im�1)using the equation 4.1. Now we substitute the un
overed input fun
tion gm forthe input im in the un
overed edge fun
tion as EDm = E(x; i1; :::im�1; gm(:::)) orEDm(x; i1; :::; im�2| {z }; im�1). Now gm�1 
an be 
omputed in similar manner usingEDm as the un
overed edge fun
tion. Similarly we 
an 
ompute un
overed inputfun
tion gi for ea
h input variables i to generate un
overed input fun
tion ve
-tor G(x). Now, to generate a 
omponent, we repla
e ea
h input variable for
orresponding un
overed input fun
tion, in the order they are 
omputed, to geta 
omponent of M towards minimal de
omposition.Updating Un
overed Edge fun
tionAfter generating a 
omponent, we need to update the un
overed edge fun
tionby eliminating all impli
itly 
overed edges by that 
omponent. The edges 
ov-ered by a 
omponent SG(x; i) 
an be 
omputed using the De�nition 4.7. Thento ex
lude these edges from the un
overed edge graph we 
ompute the un
overededge graph as ED(x; i) = ED(x; i) � SG(x; i). The algorithm for 
omputing the
overed edges is shown below:Algorithm 4.2.1: ComputeCoveredEdges(C; f)= � To 
ompute the set of 
overed edges of M by a 
omponent CC : A 
omponent of the finite state ma
hine M;G(x) : Un
overed Input Fun
tion V e
tor of 
omponent C;f(x; i) : Transition Fun
tion V e
tor of M;n: number of state variablesreturn f(x; i), f(x;G(x))Example 4.2 Let us 
onsider the �nite state ma
hine des
ribed in example4.1. The transition fun
tion of this �nite state ma
hine is as follows:x01 = x1 + i1:x2x02 = x1To �nd a minimal de
omposition, let us �rst de�ne un
overed edge fun
tionED(x; i) = 1 where D = �.Taking u(x) = 0 and v(x) = 0, from equation 4.1 and equation 4.2:g(x) = f1(x) = ED(x;1) ^ED(x;0)Computation of the 
omponents is given below:First Component



4.2. BASIC TECHNIQUE FOR SYMBOLICMINIMAL DECOMPOSITION37i1 = g1(x1; x2) = 0after repla
ing i1 by g1 in un
overed edge fun
tion, ED(x; i) = 1.i2 = g2(x1; x2) = 0So, the �rst 
omponent will be: x01 = x1x02 = x1This 
omponent is shown in Figure 4.2.3 as 
omponent 
1.Covered transitions by this 
omponent 
an be 
omputed using De�nition 4.7 as:SG(x1; x2; i1; i2) = (((x1 + i1 � x2), x1) � (x1 , x1))SG(x; i) = x1 +�i1 + �x2.New un
overed edge graph would be:ED(x; i) = ED(x; i) � SG(x; i) = 1 � (x1 +�i1 + �x2)ED(x; i) = �x1 � i1 � x2Se
ond Componenti1 = g1(x; i2) = ED(x; i2;1) ^ED(x; i2;0) = �x1x2after repla
ing i1 by g1 in un
overed edge fun
tion, ED(x; i) = �x1x2.i2 = g2(x) = ED(x;1) ^ED(x;0) = 0So, the se
ond 
omponent will be:x01 = x1 + x2x02 = x1This 
omponent is shown in Figure 4.2.3 as 
omponent 
2.Covered transitions by this 
omponent 
an be 
omputed using De�nition 4.7 as:SG(x1; x2; i1; i2) = (((x1 + i1 � x2), x1 + x2) � (x1 , x1))SG(x; i) = 1.New un
overed edge graph would be:ED(x; i) = ED(x; i) � SG(x; i) = (�x1 � i1 � x2) � (1) = 0Sin
e, un
overed edge fun
tion is 0, there exists no un
overed edges. So we
an terminate the generation of the 
omponent. The minimal de
ompositionD = f
1; 
2g.4.2.2 AlgorithmIn the 
omputation of un
overed input fun
tion g(x), u(x) and v(x) 
an takeany value. As we know from previous dis
ussion, 
omputation of the fun
tionsf1; f2 and f3 involves taking 
ofa
tor of un
overed edge fun
tion ED(x; i) forboth values of i. However, if we sele
t the values of tunable fun
tions u(x) andv(x) properly, we 
an save one 
ofa
tor 
omputation. For example, if u(x) istaken as 1 and v(x) is taken as 0, the equation 4.1 redu
es to:g(x) = f1(x) + f2(x) = ED(x;1)The pseudo
ode for generating a minimal de
omposition of the Kripke stru
-ture and a 
omponent is given as Algorithm 4.2.3 and Algorithm 4.2.2 respe
-tively. In these algorithms we use u(x) = 1 and v(x) = 0 to minimize 
ompu-tation e�orts.



38 CHAPTER 4. QUANTIFIER ELIMINATIONAlgorithm 4.2.2: GenerateNextComponent1(ED; f)= � To Generate A Component Using Basi
 Graph De
omposition � =ED(x; i) : Un
overed Edge Fun
tionf(x; i) : Transition Fun
tion V e
tor of Original Kripke stru
ture= � x is n� dimensional state ve
tor and i is m� dimensional input ve
tor � =8>>>>>>>>>><>>>>>>>>>>:
EDm+1  ED(x; i)Cm+1  Vnj=1(x0j , fj(x; i))for k  m downto 1do 8>><>>:Taking u(x)=1 and v(x)=0
ompute gk(x; i1; : : : ; ik�1) from (EDk+1(x; i))1=ikEDk  (EDk+1)gk=ikCk  (Ck+1)gk=ikreturn C1Algorithm 4.2.3: GenerateMinimalDe
omposition(f)= � To Generate A Minimal De
omposition of the Kripke stru
ture � =f(x; i) : Transition Fun
tion V e
tor of Original Kripke stru
ture= � n : number of state variables; m: number of input variables � =8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:
lo
al ED(x; i) : Un
overed Edge Fun
tionlo
al D : De
ompositionlo
al C : ComponentD  �ED(x; i)  1repeat8>><>>:C  GenerateNextComponent1(ED; f)COV  ComputeCoveredEdges(C; f)ED  ED ^ COVD  DSfCguntil ED = �return D

4.3 Counter-example fo
used Graph De
ompositionIn the de
omposition s
heme dis
ussed in last se
tion, to generate a 
ompo-nent we sele
t the edges to be 
overed in that 
omponent randomly. So while
omputing the ba
kward image, a large number of 
omponents may requirebefore termination of the algorithm; even if the 
ounter-example is of smalllength. To over
ome this disadvantage, we 
an guide the de
omposition pro-
ess in su
h a way that while sele
ting the transitions for a 
omponent, it prefer
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h 
an possibly lead to a 
ounter-example. We 
all this s
hemeCounter-example fo
used Graph De
omposition.4.3.1 Basi
 Te
hniqueThe main idea behind this s
heme is to sear
h the 
ounterexample using as few
omponents as possible. This is a
hieved by preferring those edges, whi
h 
anpossibly be the part of the 
ounterexample in the generated 
omponent, overother ordinary edges. One way to sele
t \preferred edges" is to 
hoose thoseedges whi
h are (1) un
overed and (2) 
oming dire
tly from an state outsidethe set of failed states to any state in the set of failed states. Failed states arethose states whi
h are known to have transitions into Bad states. Preferringsu
h edges guarantees that if there exists any edge whi
h 
auses an initial stateto make transition to a failed state in one step, new 
omponent will 
over thatedge. To implement it, we need a fun
tion whi
h takes a state assignment asinput and 
an give us the \preferred edges". We 
all this fun
tion \preferrededge fun
tion" PD(x; i).De�nition 4.8 Preferred edge fun
tion is a Boolean fun
tion PD(x; i), su
hthat:PD(x; i) = 1 i� (1) state x is not a failed state and from state x on input ithere is a transition to any failed state and (2) edge (x; i) is not 
overed in anyof the previously generated 
omponents.PD(x; i) = 0 otherwise.If Fail(x) represent the set of fail states, then Preferred edge fun
tion 
anbe 
omputed using following equation:PD(x; i) = ED(x; i) ^ (Fail(x) ^ Fail(f(x; i)))where ED(x; i) is un
overed edge fun
tion.Computing Un
overed Input Ve
torProblem Statement Given a Preferred Edge fun
tion PD(x; i) andan Un
overed Edge fun
tionED(x; i), �nd G(x) = f(i1 = g1(x)); (i2 =g2(x)); :::; (im = gm(x))g whi
h takes a state x as input and gives valueof input i1; ::; im 
orresponding to preferable transition from x.While de
iding the transitions to be 
overed in a 
omponent, our de
ompo-sition algorithm always tries to 
hoose an edge (transition) from Preferred edgefun
tion. If there exists no preferred edge, it 
an sele
t an edge from Un
overededge fun
tion. Using a similar reasoning to basi
 de
omposition algorithm, un-
overed input fun
tion 
an be 
omputed as:g(x) = fP1 (x) + fP2 (x):uP (x) + fP3 (x):vP (x) (4.5)Where fP1 ; fP2 and fP3 
an be de�ned as



40 CHAPTER 4. QUANTIFIER ELIMINATION1. fP1 (x) = PD(x;1) ^ PD(x;0)fP1 (x) will be true if from the state x the edge labeled with input i = 1 isa \preferred edge" and i = 0 is a non-preferred edge. Hen
e to generatethe new 
omponent we 
hoose edge 
orresponding to i = 1.2. fP2 (x) = PD(x;1) ^ PD(x;0)fP2 (x) will be true if from the state x both the edges, that is, with i = 0and i = 1 are preferred. Hen
e we 
an 
hoose any of them. So uP (x) 
anbe any fun
tion of x.3. fP3 (x) = PD(x;1) ^ PD(x;0)fP3 (x) will be true if from the state x both the edges, that is, with i = 0and i = 1 are not there in \preferred edge fun
tion". Now we 
an 
hooseany edge from un
overed edge fun
tion. So from equation 4.1, vP (x) 
anbe 
omputed as:vP (x) = f1(x) + f2(x):u(x) + f3(x):v(x) (4.6)where f1; f2 and f3 are same as de�ned in 4.2, 4.3 and 4.4.4.3.2 Exploiting Tunable ParametersIn the 
omputation of g(x), the fun
tions uP (x); u(x) and v(x) 
an take anyvalue. As we know from previous dis
ussion, 
omputation of the fun
tionsfP1 ; fP2 ; fP3 ; f1; f2 and f3 involves taking 
ofa
tor of PD(x; i) and ED(x; i) withrespe
t to both assignments of i. Sin
e 
omputation of 
ofa
tor with respe
tto both values of i has the 
omplexity similar to that of quanti�
ation (equa-tion 2.1), we would like to 
hoose the values of the tunable parameters su
h thatwe 
an save at least one 
ofa
tor operation. Below we are giving one possible
hoi
e of uP (x); u(x) and v(x) that allows us to 
ompute g(x) taking only one
ofa
tor of PD(x; i) and ED(x; i).g(x) = fP1 (x) + fP2 (x):uP (x) + fP3 (x):vP (x)and vP (x) = f1(x) + f2(x):u(x) + f3(x):v(x)So g(x) = fP1 (x) + fP2 (x):uP (x) + fP3 (x):(f1(x) + f2(x):u(x) + f3(x):v(x))Putting uP = 0; u = 1 and v = 0 :g(x) = fP1 (x) + fP3 (x):(f1(x) + f2(x))sin
e fP1 (x) � (f1(x) + f2(x)):= � From the de�nition of Preferred Edge fun
tion � =g(x) = fP1 (x):(f1(x) + f2(x)) + fP3 (x):(f1(x) + f2(x))g(x) = (fP1 (x) + fP3 (x)):(f1(x) + f2(x))g(x) = PD(x;0):ED(x;1) (4.7)



4.3. COUNTER-EXAMPLE FOCUSED GRAPH DECOMPOSITION 414.3.3 AlgorithmThe algorithm for generating a new 
omponent is given below. It takes pre-ferred edge fun
tion, un
overed edge fun
tion and transition fun
tion of theKripke stru
ture as input and generates a 
omponent.Algorithm 4.3.1: GenerateNextComponent2(ED; PD; f)= � To Generate A Component Using Counterexample Fo
used ��De
omposition � =ED(x; i) : Un
overed Edge Fun
tionPD(x; i) : Preferred Edge Fun
tionf(x; i) : Transition Fun
tion V e
tor of Original Kripke stru
ture=�n : number of state variables; m : number of input variables � =8>>>>>>>>>>>>><>>>>>>>>>>>>>:
EDm+1  ED(x; i)PDm+1  PD(x; i)Cm+1  Vnj=1(x0j , fj(x; i))for k  m downto 1do 8>><>>:
ompute gk(x; i1; : : : ; ik�1) from ((EDk+1(x; i))1=ik � (PDk+1(x; i))0=ik )EDk  (EDk+1)gk=ikPDk  (PDk+1)gk=ikCk  (Ck+1)gk=ikreturn C1;After 
omputing the 
omponent, set of 
overed edges by this 
omponent
an be 
omputed using De�nition 4.7. In next 
hapter, we dis
uss an approa
hfor 
he
king safety properties over �nite state ma
hines using the de
ompositionapproa
h dis
ussed here.
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Chapter 5Lazy De
ompositionWe are interested in 
he
king safety properties over a large Kripke stru
turewith large number of input variables. In the previous 
hapter, we explained thatthe need of quanti�
ation over input variables 
an be removed by performingrea
hability over the de
omposition of the �nite state ma
hine. In this 
hapter,we present an eÆ
ient method for 
he
king \safety properties" over the de
om-position of the �nite state ma
hine. We 
all this algorithm Lazy de
omposition.In the following text we are 
onsidering only ba
kward rea
hability. At the endof the 
hapter, there is a note on extending this te
hnique to perform forwardrea
hability.5.1 Basi
 IdeaGiven a �nite state ma
hine M with next state transition fun
tion x0 = f(x; i),a set of initial states Init(x), and a set of Bad states, 
hara
terize by Fail(x);we wish to explore whether a state in Init(x) 
an rea
h a state in Fail(x) viathe transitions of M . This is also known as safety problem.A naive approa
h for 
he
king a safety property over a �nite state ma
hineM would be 
omputing a 
omplete de
omposition (D = fC1; C2; : : : Ckg) of theKripke stru
ture using basi
 de
omposition approa
h and traverse ea
h 
om-ponent serially and iteratively until one of the following 
ondition o

urs: (1)�xed point in 
omputation of the ba
kward rea
hed set Bi(x) is obtained, or(2) ba
kward rea
hed set interse
ts with set of initial states. In the �rst 
ase,we 
an 
on
lude that M respe
ts the property and in the se
ond 
ase, we 
anprodu
e a 
ounterexample showing the unsafe behavior of the system. Thisway of traversing the 
omponents is 
alled as ma
hine-by-ma
hine (MBM) [14℄traversal. Alternatively, we 
an traverse the 
omponents using an approa
h
alled frame-by-frame(FBF) [14℄traversal. In FBF, instead of traversing Cthi
omponent before pro
essing 
omponent Ci+1, as the MBM pro
edure does, wehandle all 
omponents in parallel, and the traversal is a one-sweep pro
ess. Westart traversing ea
h 
omponent starting from set of fail states, and pre-imageof the set is 
omputed; then all 
omponent moves one time frame ba
k and43



44 CHAPTER 5. LAZY DECOMPOSITIONanother pre-image is 
omputed(one per 
omponent) of the ba
kward rea
hedset. The traversal is terminated on either of two 
onditions dis
ussed above.Irrespe
tive of the traversal method used, the above approa
h has a seri-ous drawba
k. In this approa
h, 
omplete de
omposition is 
omputed beforestarting the image 
omputation pro
ess. Sin
e generating a 
omponent is anexpensive operation, we would like to avoid it as far as possible. We observedthat it is not always ne
essary to 
ompute 
omplete de
omposition in order to
he
k the safety property over the �nite state ma
hine. It may so happen thatusing the partial de
omposition we may dete
t a path from an initial state toa bad state. This is the main motivation behind Lazy De
omposition.In lazy de
omposition algorithm, we generate a new 
omponent only whenthe safety problem is not answerable using the 
urrent partial de
omposition.In next se
tion we explain the intuition behind the approa
h with the help ofan example. Later we give a formal pseudo
ode of the algorithm and explain itbrie
y. In the following dis
ussion, we use the term Isolated Set of states quiteoften. We have de�ned it as follows:De�nition 5.1 (Isolated Set of states): A set of states S of a Kripke stru
-ture M is 
alled as isolated set, if there exists no state outside of the set S, that
an rea
h a state inside S via the transition relation of M .Che
k for isolated set of states 
an be performed using Algorithm 5.1.1.Algorithm 5.1.1: ISOLATE(f(x; i); S(x))= � Che
ks If a Set of states is an Isolate set on states � =S(x) : some set of states ;f(x; i) : Transition Fun
tion V e
tor of a FSM M;8<:if SAT(S(x) ^ S(f(x; i))) = truethen return false;else return true;5.2 ExampleLet us 
onsider the �nite state ma
hine shown in Figure 5.1. Let the set of statevariables is x = fx1; x2g and 
orresponding next state version is x0 = fx01; x02g.i1 and i2 are the input variables. Next state fun
tion of this �nite state ma
hinewill be: x01 = x1 + i1:x2x02 = x1Here set of initial states is Init(x) = x1 � x2 (00) and set of bad states isBad(x) = x1 � x2 (11).
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Figure 5.3: Se
ond Component de
omposed� In this example, set of initial states Init(x) (00) is not interse
ting withBad states Bad(x) (11).� Here set of bad states Bad(x) (11) is also not an isolated set as there isa transition from the state (10) to the state (11). It 
an be 
he
ked usingAlgorithm 5.1.1.� Let us initialize the partial de
omposition as null set, i.e. Dp = fg.� Sin
e no edge of the Kripke stru
ture M is 
overed by any 
omponent ofthe partial de
omposition Dp, Dp is not a 
omplete de
omposition. Nowwe generate a 
omponent of the Kripke stru
ture using 
ounter examplefo
used de
omposition.� Component C1 is generated (Figure 5.2.A) using the Algorithm 4.3.1.Now Dp = fC1g.� After performing ba
kward rea
hability over 
omponent C1, �xed pointis dete
ted (Figure 5.2.B). At this point set of ba
kward rea
hed statesis (11, 10) or F (x) = x1. This set is also not an isolated set of states asthere is a transition from the state (01) to state (10). It 
an be 
he
kedusing Algorithm 5.1.1.� It is 
lear from the Figure 5.1 and Figure 5.2 that transition from state (01)to state (10) is not 
overed by the 
omponent C1. Sin
e all the edges ofM are not 
overed in 
omponent C1, Dp is not a 
omplete de
omposition.Now we have to generate another 
omponent.� Component C2 is generated using the de
omposition Algorithm 4.3.1.Now new partial de
omposition would be Dp = fC1; C2g (Figure 5.3).� Using MBM traversal of partial de
omposition Dp, we traverse C2 �rst.After rea
hing �xed point in C2, state (01) will also get in
luded in setof Failed states. Now we 
onsider 
omponent C1 for traversal. In this
omponent we also rea
h �xed point in �rst iteration only. After rea
hing
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Figure 5.4: Fixpoint in both 
omponents
�xed point in both 
omponents (Figure 5.4), we 
he
k whether set offailed states 
onstitute an isolated set of states. In this 
ase it is true.Now the algorithm gets terminated by de
laring the system safe.

The algorithm for ma
hine by ma
hine traversal (MBM) of the partial de-
omposition is given in Algorithm 5.2.1. The pseudo
ode for 
he
king thesafety property of the Kripke stru
ture using lazy de
omposition is given inAlgorithm 5.2.2. In the next se
tion we brie
y explain the steps of the Lazyde
omposition algorithm.



48 CHAPTER 5. LAZY DECOMPOSITIONAlgorithm 5.2.1: TraversePartialDe
omposition(Dp;varFail(x))= � MBM traversal of Partial De
omposition Dp � =Fail(x) : set of ba
kward rea
hed states= � passed by referen
e � =global Init(x) : set of initial statesDp : partial de
omposition 
ontaining n 
omponents of M:f
i (x) : transition fun
tion ve
tor of ith 
omponent :8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

lo
al fixpoint : Booleanlo
al traverse : Booleanfixpoint falsewhile fixpoint = false
do

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

fixpoint truefor i 1 to ndo = � For ea
h 
omponent do � =8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:
traverse truewhile traverse = true
do 8>>>>>>>>>><>>>>>>>>>>:

Failold(x) Fail(x)Fail(x) Fail(f
i (x))if SAT(Init(x) ^ Fail(x)) = truethen return falseif SAT(Fail(x) ^ Failold(x)) = falsethen traverse falseelse �Fail Failold ^ Failfixpoint false



5.2. EXAMPLE 49Algorithm 5.2.2: Che
kSafetyProperty(f(x; i); Init(x); Bad(x))
omment:Che
king the Safety Property Using Lazy De
ompositionInit(x) : set of initial statesBad(x) : set of bad statesf(x; i) : Transition Fun
tion V e
tor of the FSM M8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

lo
al Fail(x) : set of ba
kward rea
hed stateslo
al Dp : Partial De
omposition of Mlo
al ED(x; i) : Un
overed Edge Fun
tionlo
al PD(x; i) : Preferred Edge Fun
tionif SAT(Init(x) ^Bad(x)) = truethen return System M is not safe = � step� 1 � =if ISOLATE(f(x; i); Bad(x)) = truethen return System M is safe = � step� 2 � =Dp  fg = � step� 3 � =Fail(x) Bad(x)ED(x; i) 1PD(x; i) ED(x; i) ^ (Fail(x) ^ Fail(f(x; i)))while true
do

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

lo
al C : 
omponentlo
al result : Booleanlo
al 
overed(x; i) : set of 
overed edges by a 
omponentC  GenerateNewComponent 2(ED(x; i); PD(x; i); f(x; i))= � step� 5 � =Dp  DpSfCgresult TraversePartialDe
ompoasition(Dp; Fail(x)) = � step� 6 � =if result = falsethen return \system is not safe" = � step� 7 � =
overed(x; i) ComputeCoveredEdges(f(x; i); C)
overed(x; i) 
overed(x; i) _ Fail(x; i)ED(x; i) ED(x; i) ^ 
overed(x; i)PD(x; i) ED(x; i) ^ (Fail(f(x; i)))if SAT(PD(x; i)) = falsethen return \System is safe" = � step� 4 � =



50 CHAPTER 5. LAZY DECOMPOSITION5.3 AlgorithmIn this se
tion we explain our approa
h for 
he
king the safety property prop(x)over a �nite state ma
hine M(f(x; i); Init(x)), where f(x; i) represents thenext state transition fun
tion ve
tor of the �nite state ma
hine and Init(x))
hara
terize the initial set of states. We 
hara
terize the set of bad statesBad(x) = prop(x). The pseudo
ode of the approa
h is given as Algorithm 5.2.2.The basi
 steps of the algorithm are explained below:1. The algorithm start the rea
hability analysis by initializing the set ofba
kward rea
hed states( also 
alled as failed states Fail(x)) to set ofbad state Bad(x). At this point in time it 
he
ks whether set of initialstates Init(x) interse
ts with set of failed states. If it is the 
ase, thenthe sear
h is terminated by de
laring the system unsafe and produ
ingthe 
ounter-example, otherwise it will perform step 2.2. Now algorithm 
he
ks whether set of bad states Bad(x), is an isolated setof states. If yes, then it halts by de
laring the system safe, as there existsno state out of set of bad states that 
an make transition into Bad(x).Otherwise it will 
ontinue with step 3.3. Next, it initializes the partial de
omposition Dp as a null set.4. Here algorithm 
he
ks if the de
omposition is a 
omplete de
omposition.This 
an be 
he
ked by looking at the satis�ability of the preferred edgefun
tion PD(x; i). If PD(x; i) is unsatis�able then it means that 
urrentset of rea
hed states is an isolated set of states. So this implies thatthe �xed point of the �nite state ma
hine M is rea
hed; now algorithmterminates by de
laring the system safe; otherwise it performs next step.5. Now the partial de
omposition Dp is modi�ed by generating a new 
om-ponent of M using 
ounter-example fo
used de
omposition (see Algo-rithm 4.3.1) approa
h and adding it to partial de
omposition.6. Now algorithm traverse the 
omponents of partial de
ompositionDp. Anyapproa
h, that is MBM or FBF, for the traversal of partial de
ompositionDp 
an be used. A

ording to Cho et al. [14℄, MBM traversal resultsin faster exploration of 
ounterexample. We have implemented MBMalgorithm for the traversal of partial de
omposition. The pseudo
ode ofthis algorithm is given in Algorithm 5.2.1.7. If traversal of partial de
omposition �nds a 
ounterexample, the algorithmterminates by de
laring the system unsafe. If a �xed point is rea
hed usingthe partial de
omposition, then it 
he
ks whether set of ba
kward rea
hedstates 
onstitutes an isolated set of states. If yes, then the algorithmterminates by de
laring the �nite state ma
hine safe; otherwise we 
annot 
on
lude that the system is safe, as a partial de
omposition does not
over all the transitions ofM and it may possible that any transition thatis not 
overed in any of the 
omponents of the partial de
omposition may
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ause the system to fail. So in this 
ase, algorithm tries to generate a new
omponent and 
ontinues from step 4.5.4 Forward Rea
habilityThe Lazy de
omposition algorithm introdu
ed in this 
hapter deals with ba
k-ward rea
hability. The same algorithm 
an be used to work with forward rea
h-ability also. To 
ompute the states rea
hable in one step using forward rea
ha-bility (equation 3.1) we need to do existential quanti�
ation over 
urrent statevariables. This need of quanti�
ation over state variables 
an also be removedin the same way as we removed for input variables.



52 CHAPTER 5. LAZY DECOMPOSITION



Chapter 6Implementation and ResultsThe te
hnique proposed in this thesis is implemented to work with BDDs andSAT solvers. In next se
tion, we dis
uss some of the important features ofour implementations. In se
tion 6.2, we des
ribe the experiments with theseimplementations and dis
uss the results.6.1 ImplementationThe proposed algorithm is implemented using NuSMV2.0, an open-sour
e model
he
king framework developed by IRST. NuSMV2.0 provides extensive set offun
tions needed for both BDD and SAT based model 
he
king. NuSMV usesthe state of the art BDD (CuDD) pa
kage developed at Colorado University,and provides a general interfa
e for linking with state-of-the-art SAT solvers.NuSMV takes the model of �nite state ma
hine written in SMV [5℄ languageas input. In our implementation, we have written a parser to parse the languageof ISCAS89 ben
hmark (a restri
ted subset of verilog). We also modi�ed thesyntax to read spe
i�
ations (initial states and bad states) from a separate �le.We have implemented the lazy de
omposition algorithm using both SAT andBDD based engines. Ea
h implementation is dis
ussed below:6.1.1 SAT-based ImplementationRepresentation of the formulas: NuSMV2.0 supports Redu
ed Boolean Cir-
uits (RBC) [19, 10℄ to represent the Boolean formulas for SAT based model
he
king. RBCs are non-
anoni
al representation of the Boolean formulas. Non-
anoni
ity has both advantages and disadvantages: Non-
anoni
al data stru
-tures 
an be more su

in
t than 
anoni
al ones { sometimes exponentially more.On the other hand, determining satis�ability of non-
anoni
al data stru
turesis hard, whereas with 
anoni
al data stru
tures (like BDDs) it is 
onstant timeoperation. 53



54 CHAPTER 6. IMPLEMENTATION AND RESULTSThe fundamental operations for symboli
 model 
he
king are (1) quanti�-
ation, for 
omputing the image of a set; (2) satis�ability 
he
king, for �xpoint
he
king; and (3) Simpli�
ation, for spa
e eÆ
ient representation. The state-of-the-art of our RBC-based implementation with respe
t to these operationsis given below:Quanti�
ation: In our algorithm this step is not required, as we are elim-inating the need of quanti�
ation by using partial de
omposition for model
he
king instead of the monolithi
 Kripke stru
ture.Satis�ability Che
king: To 
he
k the satis�ability of a Boolean expres-sion in RBC, we 
onvert it to CNF before passing it to SAT solvers. RBCsrepresents a Boolean formula using only two binary 
onne
tives, that is 
on-jun
tion (^) and bi-impli
ation (,). Conversion of the RBC (a DAG) to CNF
an be done by introdu
ing an auxiliary variable at ea
h non-terminal. Thus:�(x ^ y) is 
onverted to (ai , (x ^ y)) ^ �(ai)�(x, y) is 
onverted to (ai , (x, y)) ^ �(ai)where ai is the new auxiliary variable for ea
h non-terminal node of the RBC.For the intermediate subformulas, the following 
lauses are generated:ai , (x ^ y)) produ
esfai; �x; �yg; f�ai; xg; f�ai; ygai , (x, y)) produ
esfai; x; yg; fai; �x; �yg; f�ai; x; �yg; f�ai; �x; ygWe are 
urrently using SIM sat solver that is based on DPL algorithm (DP*). In SIM, splitting is not performed on auxiliary variables.Simpli�
ation: The goal of simpli�
ation is to avoid doing repetition of
al
ulation . By drawing 
on
lusions from a formula and simplify it a

ordingly,we save the unne
essary overhead for symboli
 model 
he
king. Unfortunately,RBC do not provide sophisti
ated algorithms for Boolean formula simpli�
a-tion.Fun
tion 
omposition is the most 
riti
al operation in our algorithm. In ouralgorithm, we essentially redu
ed the problem of existentially quantifying overpropositional variables to fun
tion 
omposition. Fun
tion 
omposition opera-tion in RBCs is very ineÆ
ient as they do not o�er global simpli�
ation of theresulting RBC after fun
tion 
omposition. This results in spa
e blowup afterea
h fun
tion 
omposition operation.Currently we are handling the problem in an ad-ho
 way by 
onverting theRBC to BDD. Sin
e BDD is a 
anoni
al representation, the 
onversion simpli-�es the formula and then we 
onvert it ba
k to RBC. The 
omplexity of thealgorithms for this 
onversion is polynomial in the size of the graphs.



6.2. EXPERIMENTAL RESULTS 556.1.2 BDD-based ImplementationIn BDD based implementation, we used CuDD pa
kage for BDD manipulation.For all three fundamental operation, BDD performs better than RBC. Sin
eBDD is a 
anoni
al data stru
ture, no simpli�
ation is required for BDD basedrepresentation and satis�ability 
an also be 
he
ked in 
onstant time. How-ever, the restri
tion imposed by 
anoni
ity 
an in some 
ases results in spa
eblowup, making memory the bottlene
k in the appli
ation of the BDD basedalgorithms. The size of the representation 
an be redu
ed to some extent byproviding eÆ
ient variable ordering, but that requires manual intervention andredu
es the degree of automation.6.2 Experimental ResultsWe 
ompared traditional monolithi
 Kripke stru
ture based algorithms withour lazy de
omposition s
heme. In BDD based implementation, we 
omparedit with ba
kward rea
hability algorithm of original NuSMV. In the 
ase of RBCbased implementation 
omparison is done with state of the art SAT based model
he
king that uses quanti�
ation-by-substitution rule for quanti�er eliminationover state variables. In the dis
ussion that follows, we refer to ea
h traditionalmodel 
he
king implementation as monolithi
 implementation.We used ISCAS89 ben
hmark suite is used for the experiments. We used eightset of initial state and bad state 
ombinations with ea
h 
ir
uit and average ofthese eight 
ombinations is reported. These 
ombinations are listed below. Wewill refer ea
h 
ombination as 
1; 
2; 
3 and 
4:1. (
1) Initial states: All 0's and bad states: All 1's.2. (
2) Initial states: All 1's and bad states: All 0's.3. (
3) Initial states: All 0's and bad states: Alternating 1's and 0's.4. (
4) Initial states: Alternating 1's and 0's and bad states: All 0's.All the tests were 
arried out on a Linux i686 PC with two 997.533 MHzpentium-III pro
essors with 2GB memory. An upper limit of 30 minutes wasset for ea
h experiment. Figure 6.2 and Figure 6.3 shows the results of the testsperformed on six 
ir
uits from the ISCAS89 ben
hmark suite. The experimen-tal results reported in the thesis 
orrespond to 
ir
uits of signi�
ant 
omplexityIn BDD based implementation (�gure 6.2) 
olumn \CPU Time" shows theaverage of the CPU time ( system time + user time) for all the 
ombinations forwhi
h 
omputation terminated within 30 minutes.The 
olumn \not terminated"lists all those 
ombinations for whi
h algorithm did not terminated within 30minutes. Time for the 
omputation of the transition fun
tion and transitionrelation is also in
luded in the reported time. For lazy de
omposition basedimplementation, maximum number of 
omponents reported in all the 
ombina-tions. Average number of BDD nodes used is also reported with ea
h result.
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Circuits

No. of State
VariablesVariables

No. of Input 

s510.v

s526.v

s820.v

s1488.v

s444.v

s420.v

19 6

3 21

18 6

8 6

3 21

1618Figure 6.1: ISCAS89 Ben
hmark suite
BDD     LAZY   DECOMPOSITIONBDD     MONOLITHIC

Time(sec)Circuits CPU
Nodes
BDD

Terminated
Not

Time(sec)
CPU

Nodes
BDD

Terminated
Not

Components
No. of

s510.v

s526.v

s820.v

s1488.v

s444.v

c1, c2, c3s420.v 1.16

1.16

0.2875

0.300

49.9225

2.655 365014

4295681

18847

4316

512126

393512

1.0375

0.5225

0.335

0.2825

0.2675

3.428 686224

1382

3666

17278

49987

199474 2

2

5

3

0

2Figure 6.2: Experimental results for BDD based implementation
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Time(sec)Circuits CPU

s420.v

s444.v

s1488.v

s820.v

s526.v

s510.v

Components Compose
No ofNo. ofNot

4.2050 608

1.5775      160

RBC     LAZY   DECOMPOSITIONRBC     MONOLITHIC

1010  /

RBC/
BDD Nodes

       97826

636/
4674

Not
Terminated Compose

No of

560

60

16.993

2.9025

CPU
Time(sec)

RBC/
BDD Nodes Terminated

30874 /
111754

1557/
5217

2

3

1.6125
906/
   9581

171 9.002
8051/
      22115

6 819

1.5775
636/
     4675  60 2.9025

1557/
      5217 2 160

1.6225
229/
     872 6 1.5725

269/
     0 0872

c1. c2, c3 c1, c2, c3, 
c4Figure 6.3: Experimental results for RBC based implementationIn the 
urrent implementation, there are some problems with the a

ounting ofthe BDD nodes. We report the exa
t number of BDD nodes in the �nal versionof the thesis.For RBC based implementation, \CPU time" 
olumn lists the average time( user time + system time) taken by the algorithm for all the 
ombinations forwhi
h 
omputation terminated within 30 minutes. Column RBC/BDD nodeslists average RBC nodes taken by the algorithm and total BDD nodes requiredfor the simpli�
ation of the generated RBCs. Here also number of RBC andBDD are erroneous. The �gure presented 
an be treated as upper bound for thenumber of nodes. Column labeled \Not terminated" lists all those 
ombinationsfor whi
h parti
ular algorithm did not terminate within 30 minutes. In addition,
olumn \No of 
ompose" shows total number of fun
tion 
omposition operationsperformed by the algorithm. For lazy de
omposition the maximum number of
omponents generated is also reported.6.3 Con
lusions6.3.1 BDD based ImplementationExperimental results ( Figure 6.2) shows that our algorithm performed betterthan traditional model 
he
king algorithm both in terms of BDD nodes and interms of CPU time. One important thing to note is that number of 
omponentsrequired to verify the property are also very less. This proves the eÆ
ien
y of



58 CHAPTER 6. IMPLEMENTATION AND RESULTSour lazy de
omposition based te
hnique. However, there exists some examples( s820.v) for whi
h the performan
e of our 
ir
uits degrades. This 
an hap-pen when our 
hoi
e of su

essive 
omponents does not lead us to the earlydete
tion of the 
ounterexamples. Nevertheless, our approa
h guarantees that
ounterexample of length k will get dete
ted in less than k 
omponents. Anotherinteresting thing to note is that in some 
ombinations we got the 
ounterex-ample without de
omposing the Kripke stru
ture ( 0 
omponents). This 
anhappen when bad set of states 
onstitutes an isolated set of states.6.3.2 RBC based implementationExperimental results of Figure 6.3 shows that lazy de
omposition te
hniqueperformed worse than traditional model 
he
king in the terms of both memoryand CPU time. The reason behind that be
omes more 
lear after looking atnumber of fun
tion 
omposition operations. In almost every 
ase, number of
omposition operation with our te
hnique is greater than that in monolithi
model 
he
king and as we dis
ussed earlier, RBC is not very eÆ
ient for fun
tion
omposition. More number of 
omposition operation implies more bigger RBCsand that implies more 
alls to RBC to BDD 
onversion. This in turns resultsin more CPU and memory resour
e 
onsumption. This suggests that RBC isnot a very good 
hoi
e for implementing \lazy de
omposition" algorithm unlessgood te
hniques for fun
tion 
omposition and RBC simpli�
ation exists.



Chapter 7Con
lusionIt is a widely re
ognized fa
t that the 
omplexity of the systems 
ontaininghardware and software 
omponents is growing. The te
hnology ra
e 
ombinedwith small inexpensive mi
ropro
essors has made it su
h that our so
iety is giv-ing 
omputer 
ontrol to everything possible. From washing ma
hine to medi
alequipments, from air-
rafts to spa
e
rafts and from kids toys to nu
lear weaponsystems. Therefore 
omputer s
ientists are fa
ed with the problem of designingsafety 
riti
al systems of large 
omplexity.Symboli
 model 
he
king is an approa
h to ensure the 
orre
tness of su
hsystems. However state of the art is su
h that it is not possible to deal with
omplexity of all 
lasses of the systems using a single approa
h. In this the-sis we reviewed various symboli
 model 
he
king approa
hes that works wellwith 
ertain 
lass of problems. The approa
h proposed by us provides onemore alternative whi
h 
an handle 
ertain systems with ease on whi
h previousapproa
hes takes more time.We showed that quanti�
ation elimination from the Boolean expressions 
anbe done by de
omposing the Kripke stru
ture into 
omponents. Experimentalresults demonstrate that the te
hnique is pra
ti
al and promising if the repre-sentation is eÆ
ient for fun
tion 
omposition.7.1 Future WorkIn parti
ular, there are several ways in whi
h the 
urrent implementation mightbe improved. In the �rst pla
e, our SAT implementation is highly ineÆ
ient,sin
e it uses a data stru
ture (RBC) whi
h do not provide simpli�
ation of theBoolean formula. In addition the 
urrent algorithms for fun
tion 
ompositionare not very sophisti
ated. We believe that the performan
e of our SAT basedimplementation 
an be improved by using a suitable data stru
ture.Se
ondly, 
urrently we are handling only safety properties of the systems.Extending this te
hnique to do full CTL model 
he
king would be worth 
on-sidering. 59



60 CHAPTER 7. CONCLUSIONRe
ently, there has been in
reased interest in using multipro
essor systemsor workstation 
lusters to deal with state explosion problem. These systemsoften have a very large (distributed) main memory. Furthermore, the large
omputational power of su
h systems also helps in e�e
tively redu
ing model
he
king time. Our de
omposition based algorithms are inherently amenableto 
on
urrent rea
hability analysis. Our work 
an also be extended to run indistributed fashion to take advantage of multipro
essor systems.
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